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Abstract

Autoregressive-moving average (ARnA) models, and their autoregressive (AR) counter-
parts, are useful approximants to the kinds of random processes commonly encountered

in discrete-time signal processing applications. Such models may be used to compress
data in low bit-rate information transmission, improve frequency resolution In spec-
trum analysis, and to forecast in economic, meteorological, and other time series.

In this paper we discuss several aspects of the maximum likelihood theory of parameter
identification in ARMA and AR models. We highlight the initial condition problem
encountered when identifying AMA or AR models from finite data records and propose
several methods for computing exact and approximate likelihood. Several new interpre-
tations are given for the innovation representation of an AIA process. Computation-
ally efficient lattice and fast Kalman filters are proposed for the computation of
exact likelihood.

1. INTRODUCTION equations are routinely used.

The random processes encountered in signal pro- AR models suffer the defect that spectral zeros
cessing applications are typically lowpass or are not easily modeled with low-order schemes.
bandpass processes in which redundancy is high. Couple to this defect the fact that sample-data
This means finite-dimensional models may often versions of rational continuous-time processes
be used to approximate the second-order proper- are autoregressive moving average (ARHA) 11],
ties of the processes. The dominant motivations and we have strong motivation for identifying
for using finite-dimensional models are (1) the more general ARMA models.
they provide a systematic framework for deriv-
ing data compression and frequency resolution Traditionally the emphasis in identification of
improving algorithms, and (2) they become pre- ARHA models has been on approximate representa-
dictor formulae for event forecasting. tions (such as "long ARs") that lead to linear

identification procedures. However, more
The problems of data compression, resolution recently there has been a flurry of activity in
improvement, and forecasting are "solved", so to exact maximum likelihood formulations and non-
speak, by identifying a parametric model that linear optimization procedures. Representative
either infinitely extends a data correlation recent offerings include papers by Akaike [11,
sequence or matches the data, itself, in a Newbold [2), Osborne (31, Harvey and Phillips
least squares or maximum likelihood sense. (41, Ansley [5), Pearlman [61, and Jones [7].

Akaike I1 has advocated the use of a Harkovian
The catch in all of this is model selection and representation for an ARMA process, which is
parameter identification within the model, essentially the standard form state space model
Autoregressive (AR) models are by far the sim- well-known to engineers. Jones [73 has used

* pleat parametric models to identify. Exact this representation to formulate exact likeli-
maximum likelihood theory leads to nonlinear hood equations for ARMA processes observed in
methods, even in the AR case. However, the white noise. He advocates state space models

best AR predictor is finite-memory and linear for the calculation of exact likelihood with or
identification procedures involving Toeplitz without missing observations. Newbold (2] gen-
normal equations or non-Toeplitz Yule-Walker eralizes the exact likelihood results of Osborne
I for M processes, and of Box and Jenkins 181
-This work supported by the Army Research for AR and HA processes, to include APMA pro-
Office, Research Triangle Park, NC 27709, ceases. flarvey and Phillips 141 advocate the
under contract DAA29-79-C-0176 and by the Kaiman filter as a recursive technique for com-

* Office of Naval Research, Statistics and puting exact likelihood and reference Schweppe
Probability Branch, Arlington, VA 27740. (9] as perhaps the first investigator to write
under contract M00014-75-C-0518. exact likelihood in terms of prediction errors
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or "innovations". Pearlman [61 discusses the principal computational problem. We show how
fast algorithm of Morf, Sidhu, and Kailath (101 this gain may be obtained by triangularizing an

for updating the Kalman gain, and compares it to (NxN) correlation matrix. This provides a fast
the algorithm of Ansley (5]. Kalman predictor of the Norl, Sidlhu, Kailath

1101 variety. From the perspective of filtering
Why exact likelihood and maximum likelihood or time series analysis the innovations repre-

theory? Perhaps the most convincing argument sentation of an ARMA process provides a zero-

in favor of an exact maximum likelihood formal- initial condition, time-varying linear filter
ism for identifying ARMA models is that it gives representation of a stationary process. From a

one a basis from which to approximate. We re- batch data processing point of view the innova-
turn to this point in Section 5. Add to this tions representation provides a sequential tri-

argument the success of authors like Jones [7] angularization of the inverse correlation matrix.

with maximum likelihood identification of low Finally, viewed from a probabilistic perspec-

order (e.g. p < 3) ARHA models. Whether or not tive, the innovations representation solves the

exact maximum likelihood becomes a standardized Chapman-Kolmogorov equation that arises in
identification procedure will depend in large connection with our averaged linear time-invari-
part on our ability to efficiently compute like- ant representation for the likalihood function.
lihood and to make good parameter adjustments
using nonlinear optimization procedures. The innovations representation is shown to be

equivalent to a representation in which data is
Paper Outline: In this paper we begin with a generated as the output of a sequence of AR
general discussion of maximum likelihood (ML) filters of order 1,2..... This leads to an
theory for identifying AR2IA models of normal AR lattice for computing exact likelihood for
time series. A modal decomposition of the ARIA models.

correlation matrix for ARMA processes is derived
and placed in context with Anderson's work [12] An efficient fixed point algorithm for computing
on correlation matrix identification when the the Kalman gain is discussed and computational
matrix is a linear combination of known requirements are compared with those of Ansley
matrices. The identification equations that [5] and Norf, Sidhu, and Kailath [101.
result from ML theory are matrix versions of
the Aigrain-Williams equations [13]. 2. MAXIMM LIKELIHOOD THEORY FOR ARI. PROCESSES

"e next derive a linear time-invariant predictor Let Y = (Y .... v )' denote a finite version of

formulation of the likelihood function based on a wide-sense stationary Gaussian sequence ty .
a standard form or Harkovian state space repre- Assume the mean-value sequence is identically
sentation for an ARMA time series. In this zero. Denote the correlation sequence by jr }.
formulation the likelihood function is an infi- The correlation matrix for Y is the non-nega~ive
nite-dimensional average over a noncountably definite Toeplitz matrix
infinite collection of conditional likelihood
functions. The conditioning is on an initial r. r, ... r
condition (or state) vector. The values of
this representation are these: (1) special
initial condition assumptions suggest themselves =

for approximating the exact likelihood function
(two of the most popular techniques associated r
with the covariance method of linear prediction I
are easily interpreted in terms of initial con- r
dition assumptions) and (2) an interesting ML rN 0
procedure for ARHA parameters and initial con- The likelihood function for a realization of V
ditions arises as a potentially useful method is
of approximating the exact likelihood.

M. (Vg .N 5logI. % ! xNR ' (I)
We use the results of our linear time-invariant N " - log- o - "
predictor formulation, together with variations We make no not..- ,nal distinction between ran-
on the Bayesian tricks used in Box and Jenkins dom variables an,: realizations of them, relying

(8) and Scharf and Nolte [141 to derive exact instead on context to make the meaning clear.
likelihood for ARMA processes. The prediction
residuals from a linear time-invariant predictor A typical Xl. inference problem is to maximize
are used in conjunction with a least squares tle likelihood funct ion with respect to the
estimate of the initial state based on the ob- correlation matrix R and call tile resulting
served data record. The results include those "estimate" the ML est1*,ate of K. rhe result is
of Newbold 121, Osborne 131, and Box and Jenkins

(8) as special cases. R, - arg mx :(Y)

The next item of business is a time-varying C . C - Y
(innovations) representation of the likelihood
function in which the Kalman gain arises as the Thus, wi thout pri r ;'r t ri .ation of Nto
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reflect the fact that it must be Toeplitz anti p

related to an ARL\ sequence, ML. theory leads to AMCm
an inefficient, inconsistent, non-Toeplitz esti- M-1

mate of R. The corresponding spectrum estimate

" is the periodogram, a notoriously bad estimate, where

N
Modal Decomposition: The correlation sequence (Am, C =) arg max - log2n- lugILQ

m) 1 tA p
*:.'. of an ARMA (p,p) process (p poles and p zeros) mm

may be written

P In! 
r ~

r E AP 
P
n The resulting nonlinear ML equations are

I, 1 --1for poles om:tr

lie will call 10 the mode of the process f
and A the corresponding residue. Each ,o is a for residues Am:tr [C CGfr0

complex zero of the polynomial A(z) - 1 (ml,2 .p)

...+a z-P in the ARMA representation 
p

* -~ + +bu(2)constraints: P- Zm m m.'GV~1y +a +m 
m

- ". ~~ ~ ~ talYt-l+''+p t-p'Ut+blUt-l+''+pUt-p D=[- [-

2i. t  .i.d N(O,o
2 ) 

r.v.s. (2) m m

... (3)

We assume the zeros of A(z) and B(z) = 1 + b z-I +...+b z
-p 

lie inside the unit circle. The
+...+bC

1
'lieinsde he nitcirle. TheHere is how these equat~ions may be used. For

resulting process is stable and minimum phase. any choice of residue-pole pairs {A., m.
P 

ob-
jectiye functions of the form r(AmO) -tr RN [G.RP l-G,] , m-1.2,.: ,,p, may "efoed

The covariance matrix RN may now be written as cr R '4nct m] havezeros a y ge formed.

a linear combination of symmetric, linearly- These functions have zeros at tAm.m . the 'L

independent, Toeplitz modal forms: estimates. So ML estimates may be found from
a nonlinear regression algorithm that seeks

p the zeros of (mm m-1,2,...,p.
~R= Z A\Gm
RN Z A Linear Time Invariant (Markovian) Representa-

tion: Let { be the ARMA (pp) sequence of
0  

0N-l Eq. (2). Thetstandard form or Markovian state
m m space representation for yt 

) 
is

pm v' ytt t/t -l+UtG ' c c fl 0 o...o01

" Yt/t-1 "£xt
OO010... 0 - I

N- xt=Axt l+hU1 A- i
" m XO:N(0.Q0)

An alternative representation is [12] ..- hp
u :i.i.d. N(0, ')r.v.s. P

p N-I It N-E A : 0 Ft .1 rF t/t-1
mA1 m t p -0 t r0 at

Yy+Ift-l.a1i ~
0 ... 0 1 ... O

t 2 1

Ft' .Y - t+p-llt-I b1 V
p p P

o-r 0 ... 1 0 In this representation it is important to note

that tho p-dimensional state x_ is a vector ofs-step predictors y9s/ (S-OO'l .....p-1) based
These representations correct a hasic defect is-te ps teictors 1 s0, . ) b

on the infinite past lty
the original formulation hy forcing the HL esti- t-l't2 .
mate of R to be symmetric and Toeplitz. -(y t /

Write

& o
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The unit pulse response sequence {h I and corre-
lation sequence ir t } provide invaluable first- yc+u 0 .. 01
and second-order descriptors for the ARNA pro- -t-)
cess: 0'1 0 .. .01 k• .Yt/t-I~ xt

h *-0 xtAx t-+kt-Ut AI 0--- a, . -a k 
P)

c'At- " 1  , t>l X 0 0p [t j

r t - EAtQ E + , t > 0 ut:indep.N(.v t)r.v.s.

_t tvt-APt c+AQc+i h

Q . AQoA + 12 h' xt Yt+l /t-
0 -tt-1t-

vt ro-c"Ptc
Figure 1 shows feedback diagrams for this pro-
cess model and the corresponding predictor
structure. Note that both diagrams are time-invariant. Yt+p-l/t-Ij Pt=E(x t

x
"t

)

In this representation the p-dimensional state
x is a vector of s-step predictors Yt+s/t-1

t

(s=O,l,...,p-1) based on.the finite past
{Yt-l'Yt-2 ... 'Yo}:

Ely t. - -2 . .IO

>t+s/t- Elt+s/Y~.y_ .. O

'" " mThe time-varying unit pulse response sequence

(ht and the (generally non-stationary) corre-
.

lation sequence irt I provide first- and
" Ysecond-order descriptors for the ARIA process:

ht" 0 i <0

t =1

(a) 0
h t cA i- k i > 0{"0'ul -N ... i "- t

t t -t t

Pt+r " APtc" A -t-t t

t.
ri Ely y

',-%" r Ey t  Yt+i
I

" t_!(x ) With k v chosen to be

(b) k t - -APtc + ,\QO! + o2h1(6)

then r. = ri and iy, l is wide-sense stationar"
with to same corre ai .on function obtained in
the previous section. Figure 2 shows feedback

rig. 1. Parkovian State Space model for AR A diagranLs for this model and the corresponding
(p~p) Process: (a) model, predictor structure. Note that both diagrams

(h pcdctrare tirm,-var'in. Tie innovations model is
Linear Time-Varying (Innovations) Reporesenta- simpv a timc-warvig model that starts from

zero initial condtios and, nevertheless. gener-
t ion: rhe t ime-varving. or inniovt ions. repre- tsattjnryeqnc"-"senatin fr (t~oisate.s a stationary sequience.
sentation for (y t Oi.

I
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N

f(Y)'/dXONx (O,Q0 ) t N y(Yt/t-l'',
0 t.0 t

The exact likelihood is tN (Y) - n f(Y). In

Section 5 we show how this representation may

be used to obtain a variety of approximate like-

U " Yt lihood functions.

+ Exact Likelihood in the Innovations Representa-
tion: From the predictor structure of Figure 2
we see that Y is distributed as follows:

N,',' '(a) f(Y) - T N y(t/t-l,vt)  8

Cu 'u ~t-O Yt(8

where Yt/t_,now depends only on the finite past

". and v is a time varying prediction error vari-
ance. The exact likelihood is N(Y) - Zn f(Y).

Connections: A Chapman Kolmogorov Equation and
Initial Conditions: Comparing Eqs. (7) and (8)

E T it is clear that the innovations representation

has solved a very important Chapman-Kolmogorov
equation:

N
(b) fdx O Nx (O,Q) W ( ,)

0 t=0 ytYt/t-1 0

N
t = Y (y 

t/t- l v t
) (9)

Fig. 2. Innovations Representation for ARMA (We have used the notation yt/t_l(xo) on the LHS
(p,p) Process: (a) model,

(b) predictor to distinguish between the two y/ t-l.) This is
one interpretation. But note f(Y) may be writ-

Exact Likelihood in the larkovian Representa- ten

tion: From the predictor structure of Figure 1
we note that, given x0, Y is distributed as f(Y) = f(Y/X0 )f(Xo)/f(x0 /Y)
follows:

What this means is that solution of the Chapman-

N Kolmogorov equation is tied up in the solu-
f(Y/xo) - f N ( 2 tion for f(xn/Y), the - :'aser-',, density for

t,0 Yt t/tl the initial condition x given observations Y.
This is fundamental. AXways the problem is

Here Nyt is the normal density initial conditions. In Section 5 we derive a
closed form expression for f(x0 /Y), and thus

2 2-'. derive an exact time-invariant realization of
N ( ,o ) * (2iw the likelihood function.

-xp (y tL y t 2 The Innovations Representation is Equivalent to
2oexp(- 2 t a Sequence of AR(t) Models of Increasing Orders:

The innovations representation may be inter-

Caution: "function of x But x0  preted as a sequence of AR(t) filters in dis-
Cadrutis afunctino0follows: o 0 guise. This interpretation provides for
io distribu[ 98.s another constructive approach to recursive com-

-. ' _putation of exact likelihood. The key is to

: Nx (OQo)-(21)- iO 2 . use the properties of the Toeplitz correlation0 0
0 0matrix RN to achieve a sequential computation

in terms of dimension.
"." exp{- 1 X*ol)O }

' 0, 0 .0 Recall the original likelihood expression

So the unconditional density of Y is

42
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) 1 1 where a represent the coett.clefts of the opti-Z (Y)- } log:,- - logI R, - I Y'" a h cre
N 2 2  2 Mal AR prediction of order i and the corre-

sponding variance. The sum 'f squares in the
%Partition R to obtain an equivalent partition likelihood is ther, obtained - the squares of"" of the inverse,

othivrethe successive outputs of a ime varying, order

-" . increasing MA filter fed wiltl the data to gen-
. .r 0  r " 11a a 'N / aN

0erate the prediction residutls:

R [ rr]- t
r %- a NaN (%-I + (10) Z Eoa, yt, (13)

with aN - r0 - r' , r - I /l%_Il . The This computation is started with zero initial

vector aN is easily recognized as the set of conditions and conyeniently weighted by the

optimal parameters for an autoregressive model inverse variance -

AR(N) of order N fitted on the given model

(ARMA) correlation RN . As a consequence the A seemingly more convenient implementation,

likelihood is decomposed according to (11): fIrst proposed by Kailath et al. [15), makes
use of a now classical expression of the in-

-2 verse of a Toeplitz matrice [161 in terms of
1 'N 1

.a - - -log 2w (11) the coefficients of the order N predictor (i.e.
N N-1 2 og aN  QN first column of the triangular factorization in

(12)),

Here i is the prediction error of the AR(N)

model measured on the data and aN the corre- o *i [" "0 
"  

.

sponding variance, a 0

This approach is obviously equivalent to the N . I
preceding innovation representation and is N

merely another way of computing the innovations ' 1 0

sequence. The whitening condition is here re-

placed by the orthogonality condition satisfied

by the optimal AR estimated model. In the fol- (14)

lowing, one of the two approaches will more N r-
naturally give rise to a time sequential con- where a, . ai*"N
putation of likelihood and the other to a

batch implementation. This representation is suitable for time invar-

iant implementation using two reciprocal MA
- 3. RECURSIVE COMPUTATION OF LIKELIHOOD FOR filters of given order N and N-I:

BATCH DATA

In many applications the measurements v N y.
-c • a. -

are readily available, and can be processed t =t t

a batch. Moreover, the likelihood computation (15)
for a given model is generally imbedded in a t

larger iterative procedure for optimizing the zt - = N-i+l Yt-i

model (such as nonlinear programming) which is I.1
not fitted for real-time implementation. An
efficient batch method for evaluating the like- The outputs are then squared, subtracted,

, lihood is therefore often desirable. weighted and accumulated to compute the desired

likelihood. The major limitation of this meth-
A first solution is given by the expression for od is evidently the restriction to a fi::ed
R1 using the autoregressive estimates of suc- sample size N.

cessive orders. The appropriate Cholesky fac-

torization is But the opposition between the two implementa-

tions of Eqs. (13) and (i5) is only apparent.

F 1.\ ~ .. The time-variation in (13) is more meaningfully, /. interpreted as an order adjustment at each sa-1-
pie. The two methods can be imbedded in the
same lattice structure using only thereflection

coefficients N~ (i.e. last row of the
..- triangular facorizAtion in (12))[17]. The pre-

% •ceding quantities z1 are then available at the
output of the various sections of the lattice

(12) according to Figure 3.

I
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the inverse as in (12) the correlation ritrix
itself may he uniquely decomposed into an upper

Section 1 Section J Section N and a lower (transposed) factor.
- t N

zt zt t t- 0 2
. t-p 0

s o  . . . s

R =(16)

1 0
0 0 s1

0
so0

Fig. 3. Use of an AR lattice for computing
exact likelihood for ARNA process Here the notation "2" stands for the product by

its transpose. The quantities sj are readily
This structure is well known for its excellent interpreted as cross correlations between the 
sensitivity properties and allows at the same and their prediction error for a predictor of
time a convenient sequentialization of the com- order j. As the ri for i>q satisfy the AR re-
putation by adding newszctions to the fixed cursion with coefficients a, it is also the
preceding ones. case for the s3 iq. After the normalisation by

the si ate the coefficients of a timeThe computational requirement for the above varying ipue respnse. By taking the first

method is the fitting of an order N AR predictor (t+l).rOWSand columns of St, it follows that:

to the correlation sequence of the given ARNA
model under test. This is conveniently achieved r .r t . . t-p .. 0 2
using the classical Levinson algorithm in order 0 p". s
of N operations instead of N

3. But still N is • :0 .

large in many applications (e.g. - 256) and the . " (17)
correlation must be carefully computed (even in -
this noise free case) to ensure the necessary r . r0  0 s
stability of the predictions. " j L 0 t-p,

4. RECURSIVE COMPUTATION OF LIKELIHOOD FOR

REAL-TIME DATA As a consequence the time-varying system with
impulse response h fed with white noise of var-

The state space formulation gives a nice con- iance vt both defined such that
* ceptual way of generating the innovation se- t t d

quence in the well understood framework of h - si/s and vt = S (18)
Kalman filtering. The formulation becomes par-

ticularly interesting when we note that there reproduces the stationary correlation of the
exist efficient algorithms for computing the process. The h. for i=l',p coincide with the
Kalman gains. This efficiency is not achieved components of te Kalman gain kt and vt is the
using standard algorithms that ignore the fine corresponding variance of the innovations.
structure of the data. Here the data are out-
put correlation coefficients for an AR pro- An efficient algorithm has been provided for
cess, and the state space equations describing factoring Rt according to (16) (18]. Moreover.
them must have an input/output counterpart. it has been proven to generate a minimum phase

model [19] and can be implemented using fixed
More precisely the convolutional form for the point arithmetic [201:
time-varying innovation representation is t t

"t _-s-t-1 s0
Yt 

=  
ht I s h0  )s (19).il hi ut- i  0s;+0tl

t+l t ti '" ~s +  Its + t ~ ~
which relates to the state space description by i i t

5
-t-i-l V i

,. . t+l
i-l t t i-I .t i-I In this particular case, only the si for i=O,p

ik u h-cA -t ruseful. They are computed using p nonzero
values for h<O, so that the required number of

multiplications per step is approximately 2p.

This impulse response description will now be The values for i-p may he deduced if necessary

used. from the recursion with coefficients a.

Instead of using the Choleskv factorization of Moreover it mav be noted that the most imporrant

6



role in the behavior of the model is played by " hI

the HA part. For an AR-only process, the Kalman P

gain would converge in p steps (p first AR pre- A,

dictors) but for an HA process the gain convergesj .

at infinity. It seems therefore interesting to

consider the AR and A parts separately instead .aj SI,

of constructing the ARHA correlation sequence. -

This can be done by extending the AR part of the
equation in order to include the zero initial The (pxp) Toeplitz matrix of unit pulse

conditions and deduce the time varying HA corre- responses satisfies the linear equation

lation matrix V for the given stationary ARMA
output correlation Raccording to (20): Ali - B (21)

RN p

Special cases are

0 aa . H 6 AR: A H-I

a • p P
0R I - V We may summarize init',l conditions by estab-

N a lishing the followin, near dependence:
a a

a0 . .  .  0pia. A* Y_ + A O" U- + 6 U0  (22)
. . , : -p Y -p

i I The special cases ar

a a ... a0
' HA:

(20) Y= 5* r" + B A* Y + A YO t'
.-- p -p 0 0

Due to the zero initial conditions, the V matrix From the time-invariail"sfate space representa-
is no longer Toeplitz but is still a banded tion, we have initial conditions:

* .matrix and can be computed using a, and bi. A
generalization of Bauer's Algorithm [21] may be x . Y - H U Q . R H H' (23)

applied in this time-varying case [22] to factor 0 0 P 0 0  P P P

V and retrieve the Kalman gains. The algorithm
then requires approximately q

2
/2 multiplies per The special cases are

_= step and can be interesting for small q. A

S .- closer examination of V, shows that it is KA: AR:

Toeplitz except for a pxp right bottom matrix -
and it is the feeling of these authors that the 0 -o +SU Y 0 o +A

- 
U

computations could be reduced using other
choices for the initial AR and MA parts. x0  S* U_ x0  -H A* y-p P -p

5.1 Approximate Likelihood: Fixed Initial
Conditions:

5. INITIAL CONDITIONS
Recall the likelihood function of Eq. (7). With

We return to the AM difference equation: the normal density Nx (0,Q) replaced by the

0 0

Yt + ayt-, +- .-+ apvt - ut + biUt- + dirac density ;(x0-co), wehave the approximate_P lu-1 +likelihood:
b P b u t_p N

Let us establish the following data conventions: ftY/- 0) - N (y t/tl 2..-i"t-o Yt -

u 0 Question: How to choose Xo?

Y - ,p-
P .0 -p 0 Method 1: With x0 = Y0 we are assuming

UO " O in (23). This Implies Q - R . The
-- 1 1u- - approximite likelihood is simply obtained by

And summing squared residuals in Figure 1. with

r b x fixed at Y The special cases are
o~ 0 0 00

1. , 0  
h 1 1 bL b 0  

MA : A R :

Yo A* YS..p . *V ~A =A"-" "" YO = 
l * F pA YO "A

* .* *p

.- I I - - h 0



In each of these f.pecial cases, initial condi- Mfxo = M'LY

tions are manufactured outside the data interval
with a oackward pi,,dictor. In the AR case Y._p So f(Y,x0 ) is

is a backward pre 0ction from Yo* The resulting

approximate likel .hood function reproduces the f(Y.;o)-(2o
2 )-(N+1)/2eP{- (LY-4 0)'(LY-u 0f)) (24)

equations of the ovariance method of linear 2o2

prediction. The corresponding likelihood is (Y,x0) =

Method 2. With x - 0 we have - HU. nf(Y 0 )

This impliesQ 0  . Rgain the approximate0  The AR case specializes nicely:
likelihood is obtained by summing residuals In
Figure 1 with x fixed at 0. The special cases o - (HpH
are 0 0 p p Y0

"A:AR:Equivalently,7.. A: AR:

UR= Y QO I

-p -pf 0 0
or

1.7 In this method initial conditions are set to
zero outside the data interval. In the AR case A*Y + H1 Q R

1 
YO =0

the resulting equations correspond to the pre- -P p 0 p
windowed method of linear prediction. Note this reduces to the cowariance method of

of- linear prediction under the approximation
5.2 Approximate Likelihood: MAP Estimation of Qo R

1  
1. The corresponding likelihood is

Initial Conditions: 0p

As a second alternative to approximating exact N p 2+1
likelihood, consider maximizing the joint den- £ (' ) N p _ -Rp'0
sity of the data Y and the initial conditions ' 0 2 t i t-i 20p 0
x0

o (25)
max f(Y,x O )
x() The second term on the RIHS represents a correc-

tion to the usual covariance method of linear
Write out the time-invariant (Markovian) state- ti ton.

space equation for t=0,l....N:

Y Ox + HNU 5.3 Exact Likelihood:

Write the joint density of the data Y and the
0= o yN] U [U0 ...uN] initial conditions x0 as

- -N0
0' [C. A C . (A ) C1 f(Y,x) f(Y/x 0 )f(x) f(x0 /Y)f(Y)

We have the following linear dependence Here
"Here

U = L Y - U 0  f(xO) : prior density on x0 : Nx (0, O )

with

-L HN and M - H;
1 0 f(Y/x O  conditional density

N2

The matrix 0 is the observability matrix. N ( (X)'2

.v t/t- 0
The joint density of Y and x is obtained from

the density of U: f(xo/Y) :z po8t,,' ?"' density for xO ,

f(Y,x0 ) . (2-0 2(N+l) 2expi- g(Y,Xo0 given data Y•202

g(Yxo) (LY-x o)(LY- x ) f(Y) : unconditional density of Y

Note g(%,x 0 ) may be written

+x -X )4'.g(Y.xo)= (Y, 0o)+(xo- 0) 0X - o0

with

,S



Po.

Return to the joint density f(YXo):likelihood have been analyzed and compared. As

2 (N)/in previous contributions to this problem, a

f(Yxo) - (2no 2-(N+2)/2exp - central role is played by the innovation of the

2o ARIA process. Other derivations of exact like-
lihood have proceeded within the framework of

1 (_Kalman filtering where the innovations play an
-o. (x0 - 0)M(x-x 0  essential part. But innovations need not be
2 tied to Kalman filtering. In this paper we have

emphasized the innovations representation for
It follows from a factorization theorem that the ARNA process itself. This leads to a

( 2 -P/ 2
9
M

'
'  

straightforward computation of Kalman gains de-
f(x0 /Y) (2wo ) 1 NN 1  signed to generate a stationary correlation

sequence in spite of the zero-initial condi-
1 -o tions imposed on the model. The state-space

e)p{- _-1 (x0-x0Y'rN(x 0 - 0)) consists of one-step through p-step nredictions
2 based on the finite past. An interesting in-

Now write terpretation is that the tire-varvin: Kalman

gains comprise the time-var-ing .AL part of an
f(Y) - f(Y/xo)f(Xo)/f(Xo/Y) ARMA model with fixed AR part.

.t() t(Y/x 0) 4 t(x 0 ) - t(x 0 /Y) The innovations of a stationary AWrA process

need not be interpreted in the context of state
-- 1 N2space models. They may also be interpreted as

I(Y) (x (y-Yt (x)) - a sequence of independent random variables ob-
20

2 
t-O r tt10 tained by sequentially whitening the correlated

data. The whitening transfor=ation . derived
1 + 1 logJM-MJ (26) by triangularizing an inverse covariance

0 x 0 0o Q 2 matrix. The triangularizatian procecure is
1'.equivalent to fitting a sequence of AR models

- (x0 -iO)MM(x0-x0) to ARMIA data. Stable and efficient algorithms,
2o which compete favorably with fast Kalnan algo-

rithms, are available.

The first sumation may be obtained from the
time-invariant predictor in Figure 1, starting The problem of computing exact likelihood may
from any x. But the choice must be fixed up also be cast in such a way that initial condi-
with the remaining terms. Several choices are tions on a time-invariant predictor 71av an
of interest x0 = x0  , x0 

= 
0. important role. The initial conditions may be

pinned at an arbitrary value provided subse-
6. CONCLUSIONS quent .orrections are applied. This formula-

tion shows the way to appro~xl.ations of exact

Maximum likelihood (ML) is an attractive para- likelihood that may be superior to existing
metric method for fitting models to observed ones. The same approach could have been ap-
data. When the data is a time series record plied to final conditions, providing a com-
and the underlying model is ARMA, then ML be- pletely symmetrical setting in which to discuss
comes a parametric method for identifying linear forward and backward prediction outside the
models. In the parlance of signal and system data window.
theory, ML becomes a method of identifying

rational discrete-time systems from output data As mentioned previously, this paper is focused
only. on one aspect of M. identification of ARA

models: computation of exact likelihood. it
In general ML leads to nonlinear equations in is our feeling that some progress is still to
the parameters to be identified. This is re- be made on this problem to reduce co-plexity.
flected in all of our expressions for exact But just as important for overall
likelihood. By making special assumptions about maximization of likelihood would be efticient
initial conditions one can obtain in the AR case procedures for evaluating gradients and
quadratic approximations to exact MI that lead Hessians in the framework of time-var.ing inno-
to such methods as the pre-windo.ed and covari- vations representations or tine-invariant pre-
ance methods of li-ear prediction. dictor representations.

4
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Abstract Durbin algorittm my be used in conjunction vith a
K-lmn predictor or an analysis lattice to efficiently

In this paper we present a general framework for realize an AR type analysis of ARMA data. In the con-
- deriving and interpreting analysis and synthesis eluding section we outline how these observations lead

spectra of the autoregressive (AR) and moving average directly to a derivation of fast and exact likelihood
(MA) type. By analyzing MA and AR linear transforms- for ANNA time series.

*' tions of finite-dimensional data records we derive MA
type spectra that are direct analogs of the AR type 2.0 Linear Filters and Representation
spectra associated with the maximum likelihood method of Stationary Sequences
(MlM) and the maximum entropy method (MEM) of spectrum
analysis. Asymptotically the MA theory is tied up with Let (yt) denote a real, zero-mean, wide-sense
Vold's decomposition in the ame way the AR theory is s
tied up with Kolmogorov's whitening theory. atioary sequence with real 12 correlation sequence

By parametrizing the MA and AR type spectra we (r }. This sequence hat factorization
obtain a variety of spectrum models that trade off
resolution and power fidelity. We propose J-divergence -
as an attractive order fitting rule and show how it r- I h h V t

" relates to final prediction error (FPE) and Akaike's n-O n Itl

information criterion (AIC).
We call (h ) the Impulse response sequence, for reasons

1.0 Introduction n
to become clear.

The concept of wide-sense stationarity seems to Whenever we speak of {y t we have in mind the
underly the very notion of a spectrum. It is a mistake triple ({y ),{h ,(rt}).
however, to conclude that one should identify only t t t
stationary models when estimating spectra. The problem 2.1 MA(-) or Vold Decomposition
with stationary models is that initial conditions mani-
fest themselves as nuisance parameters that must either The Wold decomposition for the sequence {yt} is
be estimated or averaged over. In nonstationary models the infinite moving average (Mk(-))
the initial conditions manifest themselves as time

*: - variations (as in innovations representations) or as
order-increases (as in lattice representations). n
either case the initial conditions may be absorbed h0 ut-n
naturally into the theory.

In this paper we present a general framework for
deriving and interpreting analysis and synthesis ut : white sequence (zero-mean, unit variance

"*'" spectra of the autoregressive (AR) and moving average r.v.s.)
(MA) type. y analyzing MA nd AR linear transforma- The coefficients (h I are called the MA(-) filter co-
tions of finite-dimensional data records we derive MA n
type spectra that are direct analogs of the AR type efficients.
spectra associated with the maximum likelihood method

. (NitM) and the mamum entropy method (MEM) of spectrum First-Order Descriptors. Replace {ut ) by the impulse
analysis. Asymptotically the MA theory is tied up with t

Wold's decomposition in the same way the AR theory is sequence {6t} to obtain the impulse response
tied up with Kologorov's whitening theory .  h t > 0

By parametrizing the MA and AR type spectra we , t-
obtain a variety of spectrum models that trade off h4 resolution and power fidelity. We propose J-divergence t
as an attractive order fitting rule and show how it
relates to final prediction error (FPE) and Akalke's 0
nformation criterion (AIC).

For an autoregressive moving average (ARNA) time The complex frequency response associated with this
series, a fast impulse response algorithm may be used impulse response is
in conjunction with an innovations representation or a h(w) lim h H C()
synthesis lattice to efficiently realize an mA type t + - t
synthesis of AMA data. Conversely a fast Levinson/ +jw +J(t-1)w

This work supported in part by the Office of Naval C (W) (1,e ,...,
Research, Statistics and Probability Branch, Arlington,
VA, under Contract N0001-75-C-OS18 and the Army Re- h% (h0,hl,...,h
search Office, Research Triangle Park, NC, under Con- --

_ tract DAAG29-79-C-0176. 1Superscript H denotes Hermitian transpose.
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Second-Order Descriptors. The correlation sequence is -n
" E(z) E h x

n n! i" " rt " O hn "l
t nO 

and the vhitening filter

The corresponding pover spectral density (or magnitude-
squared frequency response) is A(z) - E en z0

n-0
r () - Ih(w) 1

The results of Sections 2.1 and 2.2 say that the impulse
MA(q) Case. In the MA(q) case the moving average rep- responses of B(z) and A(s) annihilate each other or,
resentation terminates and we may write equivalently, that H(s) and A(s) whiten each other:

q
yt n h nt-n U-n0 h t- t

- The resulting specializations In the first- and second- A(z)H(z) - 1
order descriptors are obvious.

3.0 Linear Transformations and the Representation
2.2 Al(-) orKelpojoray Representation of Snapshots

' ,'. Let Yt denote a t-satmle snapshot of (y):

The Komogorov representation for {y I is the Lt B do a t-n t
infinitautoregession( ... t - 1

in, finite atoregression (AR(-)) : The correlation matrix for Y is symetric and Toeplits:
t

-Z a - u ; 0  0 r r1  rtl.n y Yt-n t 0~r 0

M-0

The coefficients (a} are called the AR(.) filter co-
nR

* efficients.

First-Order Descriptors. Replace {u ) by the impulse 1
t

sequence (-1 to obtain the impulse response rt- 0O

This matrix has LU Choleasky decomposition
n. a h = Wt t at 1  qS-n.0 n t-n tRt I t

t

The complex frequency response is 0 0

a(w)h(w) - 1 0
h 1 h 1h0

a ( w ) -* l i C ah 0  0
t tH

t
a (aa "'" a1t-) h: h: 0 h

s

Second-Order Descriptors. The correlation sequence is
characterized by

". ah_ e n~ t - 1 h t - l t - l
t-l0

-- m-0 * - n~ s t-ht---s h0.
from which it follows that the spectrum is h h

- (w)12 r(w) 1 We call the sth roy vector h5 the order-s MA srmthe-

0 sizer, for reasons to become clear, and the st hcolumn
AR(p) rase. In the AR(p) case the autoregression ter- vector h the impulse response of an MA linear trnas-
minates and we may write formatiol to an impulse applied at time s. When we tie

up MA and AR theory we will see that other interpreta-
I-" tions accrue, as well.: an v - ' t -I

n.0 The matrix Rl has UL Cholesky decomposition
t

'. •bvious specializations of all first- and second-order
descripcors result.

2.3 Tying 'Ur the XA() and AR(-) Representations

Define the synthesis filter

2.6.2



1:'-- At *tr.,, H (w;L) - (ho(w) ..... h hlW))

,t t At 0 .U)

h (a) - C&,)h

a 0  17.. The right frequency response is the object

- 0 H (w;) - H C (W)

t t t
A- ___ _ aThis is a column vector of phased complex frequency

- 81 80 . responses for the MA synthesizers h

s+l 0 t-l Hai H (w;R) - (h (w)....,h ())
t-l t-l t-1 t
at-l at-1-s 0o h'()-

t-t•€-1~ st._- 0h(W) ._h, C t(W

a
Second-Order Descriptors. R is our obvious second-

th a t
W We call the s row vector a the order-• MA whitener, order descriptor. By analogy with linear filtering

for reasons to become clear, and the sth column vector theory we can try to associate spectra with the norms
a the exciter of an AR linear transformation required of our complex frequency responses.
-s
to generate an impulsive (not impulse) response. When LFR. Define the left spectrum as
we tie up MA and AR theory we will find other inter-

pretations and connections. 2(w;L) " 2
Whenever we speak of Y we have in mind the triple t

t -
Y , t ) or, equivalently, the triple (" At. c - C C()

t tt tt(w) t t

3.1 MA or Synthesis Transfoemation t-l
- : Ihs(w) ,2

* The snapshot Y has MA type representation s- ()
t 0

t t H t This result leads to several important observations:
-H

U :white vector (EUt. 0 EU UI :(txt) identity) ( 1)
t t t tt (1) t tes the left spectrum is the triangu-

The output y5 may be written lar windowed or Bartlett spectrum:

1 C1l1 )

Sy 1 R hu(.;L) -1C ()R CtWYs "Z 0h n u s- t tt tt

no0  n S-t-l n -Jnw- E ( - i I r e

For this reason we call h the order-s MA synthesizer. n--(t-l) t n
In the limit s+- we have

lim h
s - h V n>O (2) the Bartlett spectrum is an average of

n n magnitude-squared frequency responses
for the Impulse responses h :

th
where h is the n MA(-) filter coefficient in the -1

,.n 1 C 1 (w)JsW)1

Wold decomposition. t t ( tt - ,

First-Order Descriptors. Replace U by the identity,' t(3) if the average above is (arbitrarlly?)

I to obtain truncated at s-O, something akin to the
rectangular windowed spectrum results:

' Y t Ht t- i

As I t corresponds to a column sequence of delayed ho(w) t - hs e

npulses. we call t t a column sequence of impulse re- 1- 1 •
i ponses h to impulses applied as time s. The entry * 1 t-i

.h in h is the response at time s+n to an impulse hO, 2 n jn

applied at time s. It is easy to see that

0 RFR. Define the right spectrum to be• " hn . rnl~ A-'

h*rhR (w;R) Ht (w:R)i

There are at least two definitions we can give t

for the "frequency response" of the MA transformation c-2"t" - I IhS(,w)I 2

,. Lftl. The left frequency response Is the object

H This leads to the following observations:H" Htl(;L ) - C ( )H t
It; -Cw (1) t- ttmes the right spectrum is an average

This is a row vector of phased (or delayed) complex of sagnitude-squared frequency responses

*. frequency responses for the Impulse responses h : for the MA synthesizers h2:

-- 6
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- ( ) E lh"(,)I For this reason ye call a the ordar-s MA whtener of
s-O analyzer. In the lii a+- te have

(2) if the average above is (arbitrarily) oodi- Im a * a V n0O
fied to include only the t-l term, the s n a

"" following maximum order M4A synthesizer
spectrum resuots: yhere an is the ath AI(-) filter coefficient in the

-U Ko lsogorov representation.
.T!' I~hCZ) "  Z ht-L e'siI , s -O First-Order Descriptors. Replace U by I t to obtain

MA(g) Case: In the 14(q) case the MA synthesizing At "t
transformation specializes as follows:. As In the M& case, Rt is the column sequence of impu!"

p 0 responses h . The entries In h have the se inter-ho -s" --s

1 1 pretation as before.' 1  h0  If Ut is replaced by an exciter mtrix that makes

H-~~ .1 ,-- - - an Impulsive response, vs obtain
H- hq hq hq hq t t- t -1 nA .2t

q 1 0 For this reason we call A t also a column sequence of

0 hq h q impulsive exciters.
q 0

h q LFR. The left frequency response is the object

A (w;L) - C 0() At
t t

h This is a row vector of phased complex frequency re-
,q spouses for the impulsive exciters as

The important thing to notice here is that for q.s!t-q A (w;L) (a ... ,8 t  W)

(t>2q+l), the MA synthesizer h looks like t 0 -

the impulse response h a a5 (w) a W (W ) a
-

LFR. In the XA(q) case the LFR specializes as RFR. The right frequency response is
does its magnitude squared. The magnitude squared
becomes At(w;R) a At C t(w)

q-1 This is a column vector of phased complex frequency
Rt  (w;L) - lh (W) 2+(t-2q) lhq () 12 responses for the MA whiteners as

..... l At(;R) (a() . . a t(W))
•t-l ,t- - a-

+ h 3 w)12 a Wij -a C t(W,)sot-l-q - t-

".t - Second-Order Descriptors. RtK (or RKt) is our obvious
*,:. a linear combination that lends extra weight to the second-order descriptor. We can try to associate
. qth impulse response, tra with the norms of the complex frequency responses.

, IcBut, as At is a whitening transformation, we ought to'.RFl. In the MA(q) case the 37K specializes, s ueteivreo hs pcr sorseta ei

does it magnitude-squared. The magnitude-squared be- uni the inverse of these spectra as our spectral defi-

comes nitAs for Yt"

q-- LFR. Define the left whitening or analysis spec-
Itq(,;R) - lhJO ) 12 + (t-q)lhq(w) 2 , trum as

tq (.;L) - 1 2

a linear combination that lends extra weight to the JA(;L)2
tht

q t A synthesizer. 1

3.2 AR or Analysis Transformation C H(w)AtAH C (
t tt

The snapshot Yt has AR type representation 1
St-l 12

A Y .U tI ()t Yt " t s mO (

The outputs y to yo may be filtered to obtain Several observations can be made:

I a Y - u (1) The inverse of t times the left whitening
a s-n a spectrum is an averagse of order-increasing
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exciter spectra: I,(u:L) * -- r

_______ 1 t-l I S A(w)12+(t-2q)Ia +( Z[)12 ()i
w a 12 -o -tl-q

Stlt( ;L) a 0t
a linear combination that lends extra veight to the pth

(2) If the sum is truncated at s-0, the resulting exciter spectrum.

spectrum is Ihe inverse of the exciter spec-

truis 1(W) IlM. In the AI(p) case the ritht whitening spec-
0 trum s ecializes to the following linear combination:

VR'. Define the right whitening spectrum as

1 t~(w;R) - 1-1 t,pl p-l
""t(w;L) - z a'(w) 12+(tp) ao(w)12

" " A (w.;)l 8-Ot

1 This lends extra wight to the p MA whitener.

S(w) 3.3 Tying up the MA and AR Theory

1 We have the relations

t-l
Z lao(w)I 2  At Ht - It
S-0

Ht At I It
Several interesting observations may be made:

From these the most succinct interpretations of H and

- (1) The right whitening spectrum is the maximum 
At are the following: t

likelihood method (MLM) spectrum, h0

(2) The Inverse of t times the right whitening 1
spectrum is an average of order-increasing
whitening spectra: 2

_______ . t-l Ias(c)i2  Ht - ;hm :order-s MA
1R(.1;R) ts-O Bt synthesizer

(3) If the sum is arbitrarily modified to 
t-

include only the t-l term, the maximum

entropy method (MEt) spectrum results:

let-l(w) !2 hi

S - 0 ; h :Impulse re-~2 - onse for AR (s)

AR( ) Case. In the AR(p) case the AR synthesizing 
filter orrespond-

transformation specializes as follows:j 
. ing to orde-s A

0 whitener a
s

I h,

0

: aa
* A -

7 .. &P
t.P p 0 a I

&P SP 2s
p 0 At - - a ;a:order-s MA

- whitener or

analyzer
a
p  ap

4p 0,
PL

For pb t-p (t 2p+l) the MA whitener a' looks like -0
the transpose of the exciter a . I
*-s - _a ; a ::Iupulse re-

LFl. In the AR(p) case the LFR specializes as A2-ponse for AR(s)

does its wgnitude-squared. The left whitening spec- filter correspond-

true becomes ing to order-s MA
It synthesizer h

2.6.5
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4.0 Parametrized Spectra resolve quite uccesfully the two close peaks hi.'
the )cannot. Aother Intereiting obsearpaci

The results for MA(q) and AR(p) linear transfor-
martens suggest that the MA synthesis sad the A anal- concerns the power estimation. The parametrized
ysis transformations Rt and At may be approximateds accurately the 3d digferene

t" th the peaks, while the )IDI,(W) Spectrum gives on t'
,.thet qt and ph order approximants Ht, nd At,p" re fSB

This kind of thinking in the linear transformation
world is directly analogous to the kind of thinking The scond example ghnem in Figure 2 o s
that goes on in the linear filtering world when we synthetic i data. We nrate th order a date
identify order-q MA and order-p AR filters to model corresponding to the transfer function
data that is surely infinite-dimensional. So think of
Ht q and At p as parametrized synthesis and analysis (s) -

linear transformations that can be used in place of L-o.BZ

H and At in the various spectra defined in Sections The sae cements can be made - the paretrized

3.1 and 3.2 to obtain parametrized analysis end syn- M.21,(w) yields a much better resolution than the
thesis spectra. MIX (W)

In the sections to follow we explore the so-called
parametrized maximum likelihood method (pMLM) spectrum Finally In figure 3 we have applied the method to
that results from replacing At by At, In the right a finite set of recorded speech data. The data used ,
whitening spectrum: a set of 80 data points sampled from the vowel "I" Is

the sentence, "I hope it's April". This example iit.,
,p(w;R) 1  trates very well the compromise between resolution unt- C0smoothness. The three spectra illustrated requireSC tC exactly the same amount of computation. However, :.

parametrized ML l, 1 1 (w) exhibits a dramatic igprove-
-1 ment In resolution over the )LMl(w) and a much better

*.1 2+(t-01ap(,w) 12 power estimation of the second peak over the M

o s The results are sum-arized in the following vs.
-1 H The pMLH spectrum can be used in two conceptually
R t A A different ways. First if one is Interested in savi 8h

t~p t,p ,p parameters, then a resolution comparable to the . t -)

Let's agree to call Rt,p(w), the pMLM spectrum can be achieved with the iW t3,p With p<t. "

(W). On the other hand if better resolution is sougt,
t0

4.1 Limiting Results (rt) 0  is available, then by extending the correlat:c

matrix to t>to, a resolution close to the MEM(tO) can
The pLM spectrum nay be written be obtained while preserving the power estimation of

the MLM. As a result we see that the parametrized t.
1 ( 1 (W realizes a compromise between the smoothness of the -

"'" MM (w1 Mp( spectrum and the resolution of the MEN."+ ~pp p

. where M.XJIp( ) is the maximum likelihood method spec- 4.3 Order Fitting

trum of order p-l and ME4(W) is the maximum entropy The eassential problem In all of this is order-
thmo spetr of oder M]p fitting: deciding when Rtp, for example, is closemethod spectrum of order p.

enough to R to decide that Ut,p or At, p is a good
p-.-1 In this case the p.LM spectrum is the to toP th e

~enough approximation to K or A t In the context of.Mt spectrum."- the parametrized maximum likelihood method (pML) two
p fixed; tt-. In this case the pMLM spectrum order fitting rules arise naturally.*'. goes to the MD spectrum:

gs tJ-Divergence: 
Suppose we are given a finite data st

lit.VX wP P (W) Y with correlation matrix Rt . The parametric
t+- p

model is determined by the correlation matrix Rt,, as
From these results we see that the pMLM spectrum defined earlier. The problem of order fitting is one

d iefines a two-parameter class whose properties lie, In
, ." sos sense, between those of the HMU and the i spec . of discrintng between the two hypotheses Ht and

4 ..2 Numerical Results Rt p from the data YtHt  : Y : N(O,R t )

We examine the performance of the pMUM spectrum t

* for three different sets of correlation date. For H : Y : N(OR
purposes of comparison with published results, we use
the example of two close sine waves in noise studied The divergence between the two hypotheses is defined
by Lacoss : as:

rtes t + 5.33 cos(.3wt) + 10.66 cos(.4wt) tc[0,21]. Jt(p,t) - t.i Lt(Yt)- 4tLt(yt)

- In Figure 1 It is observed that by extending the corre-
t1stion matrix to obtain the . -4,(w) spectrum we where L t(x) is the likelihood function L t(x) *

2.6.6
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PCIu n'I~).The set of data Is supposed eorn- power fidelity of MI.M.~,p t TAll Aiscussions of PA(q) and AI(p) linear
* aly dstfi~tm Usng se ientty Ex Q) -transfotmation generalizes to ARMA(p,q) linear trans-

Tr(QECII )).* the J-diverggnco to formation. Such transformations underly lattice and
-l Innovations representations of stationary time series

J (p. 1) Tr&t; + 1tta a 1 -211. and the corresponding lattice and Kalman predictor
t) Tr[ o rp structures that play such an Important role in exact

The J-divergenCe, while not a true metric, provides a likelihood for ANNA time serie. The nonstationarity
measure of the distance between the two hypothess. It (or Initial conditions) of the linear transformations
can also be viewed as a measure of how far It R-1 or are captured In the order increase for the lattice and

&to tro thipnit arx.I 1-... the time variation for the Kalman gain. by combining
t efo teieniymarx I il.. fast Levinson/Durbin and impulse response algorithms,

1 t. ar he eigenvalues of the matrix Rt Rp then we the lattice and Kalman predictors lead to fast and
exact computation of exact likalihood.

can also write Knopmans (1 contains a more complete discussion
of the Mk(-) end ARM) theory of stat iynary time ser-

1t-l1 2Iss. The Interpretations of Rtand 9; are evident In
i*2t 0 1 I.the Influential work of Friedlander, Kailath, and Morf.

i The connectionembetween MIX end HM are due to Burg [2].
thatthe -diergece i moe siplyThe Interpretation we give for the Bartlett spectrum

This suggests mhtteJdvrecei oesml ay be close to that given by Oppenheim at the 1980
interpreted as a measure of the dispersion of the l'Aquila conference. The Lecoss example is reported

J-dnvaes rond uistwie. h Kullback-Liblerinforma- In (31. The appropriate references to Akaike are (4)1
* tio i e byAkaie in hwise dicsiohfifomto and (SI. Other topical work on order-fitting is re-

ctrIa aned orde-fiting Tis Aisu ia denfriation ported by Parzen (61 and lissanen (71. Our motivation
of te AC cn b traslaed n Is Inegrty n trso to use J-divergence arose from 181 and (9]. The sim-
of te AC cn b traslaed n is inegrty n trms plfied MM1 rule is discussed more fully In (10].

o f the J-divergence, and the following order fitting Exact likelihood is reported in [101-[11]. Variations
ruleis ropoed:on and fast versions of the Levinson-Durbin algorithm

(t~p)+ 22(131-114] are reported In (151,11, and"(101. where
it () a t trespectively the NSK algorithm, the Impulse response

* A Simpler Distance Measure: The calculation involved algorithm, and a fast Impulse response algorithm are
derived.toi the J-divergence Is quite large. We are after a Rfrne

simple order fitting rule easy to compute at each older Rfrne
p. An Intuitive measure of the distance betweLen opas "h pcta nlsi fTm

Awm R tnd consists In getting a measure of how far Series," Academic Press, New York, 1974.

p cict-l, are from the constant value -L1 Consider 121 J. P. Burg, "The Relationship between Maximum
p Entropy Spectra and Maximuim Likelihood Spectra."

71p Geophysics, Vol. 37, April 1972.
the following quadratic mean: (31 R. T. Lacoss, "Data Adaptive Spectral Analysis

Methods," Geophysics, Vol. 26, 4, Aug. 1971.

- 1 t-l 1 1 2 (4] H. Akaike, "A New Look at the Statistical Model
WM(p) - Z (- -_ -) Identification," IEEE Trans. on Aut. Cont.. AC-19,

t-p-l iinp-l ai I Lp Dec. 1974.

151 U. Akaika, "Statistical Predictor Identification,"
Sots that if the given correlation sequence corresponds Ann. Inst. Stat. Math., Vol. 22, 1970.
to an exact autoregressive process of order po, then (61 3. larsen, "Some Recent Advances In Time Series

2pm(p).0 for P.y.Modelling," IEEE Trans. on Ait. Cent., AC 19,
1974.

Numerical Results: nFiure 4' we apply the cri- (71 J. Lissanen, "Modelling by the Shortest Data
tensA to the set of correlation data estimated from Description," Automatics, Vol. 14, 1978.
synthetic ARM6 data generated in Example n92 of Sec- 18] S. Kullback, "Information Theory and Statistics."
tlot '..2. The simple measure and the J-divergence Dover Pub., Now York, 1968.

~O cmpae t th miimu prdicionerrr. igue 5 (9) L. L. Scharf and P. R. Noose, "Information Me&-
Coparete o the ofnmu ehavtior eteen thgue5 auras and Performance bounds for Array Proces-Iusrateste similarity ofs, behvio onve tnhTer.eo.I-2,Jn 96

-ltgntcorrected for asymptotic bias and the AIC 101 ." IEE aure Infar Ter Spetru IT22 alyi for6
criterion, W have applied the criteria to the Sta.P.tir Raometi Seq ecu Ph.D. ydise rin
speech data in Figure 6. Again the J-divergence cor- Stalor Stae= Seniv es," 198.Ddisraon
retted behoves like the AIC but has a sharper and Clrd tt nvriy 91
Clearer sir taus. Rare the simple measure has a slow 1111 R. R. Jones, "Maximum Likeliho'od Pitting of ARMA
Ciatranct rate that wol emsedn nteodrModels to Time Series with Missing Observations,"

woul be isledin in he oderTechnometrics, Aug. 1960.
£112] C. Gueguen and L. L. Scharf, "Exact Likelihood

5.0 CncluionsIdentification of ARMA Models. A Signal Processing
5.0 CncluionsPerspective," Proc. EDSIPCO, Lausanne, Switzer-

Hwny of the Ideas in this paper are speculative, land, Sept. 1980.
The spectra defined soon to be plausible definitions* (13] N. Levinson, "The Wiener EMS (root-mean-squsre)
'of the frequency responses of nonetationary synthe- Error Criterion in Filter Design and Prediction,"

* Siser and whiteners (analyzers). The fact that the J. Math. ?hys.. Vol. 25, Jan. 1947.
Crpme~tatj 0 , leads to BatetadMIX [pcr od 141 J. Durbin, "The Fitting of Time Series Models,"

ease crednc to the lie ofleaonand . spetura al Rev. Int. Stat. Inst., Vol. 28, 1960.
results Indicate that pHUI - and hopefully Its other [15] N. Morf, G. S. Sidhu and T. Kailath, "Some new

Paramtrized COVterparts as well-a Cbcm useful alorthms for Recursive Estimation on Constant
aduntstoHL ad ENprcesig.Th pLMsoe to LierDiscrete Time Systems," IEEE Trans. on Aut.

offer 5tradeoff between the resolution of HIM end the Cont., AC-19. August 1974.
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[163 J. Leroux sad C. Gaueg.m "A huMe Point Compu-
tation of the Partial Correlation Cofflclouts,"
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EXACT LIKELIHOOD FOR STATIONARY VECTOR AUTOREGRESSIVE
MOVING AVERAGE PROCESSES1

Jean-Pierre Dugrd
Electrical Engineering Department, Colorado State University

Fort Collins, CO 80523

Louis L. Scharf
Electrical Engineering Department, Colorado State University

Fort Collins, CO 80523

Claude Gueguen
Ecole Nationale Superieure de Telecommunications

46 rue Barrault 75634 Paris

Abstract
Les modules autoregressifs a moyenne mobile (ARMA) sont des approxi-

mations utiles des processus aliatoires communement rencontrds dans le
traitement des signaux 1 temps discrets. De tels modiles sont utilisjs a
la compression des donn~es en transmission d'informations ' bas d~bit,
I'amilioration de la risolution en analyse spectrale, ' la prevision en
economie, meteorologie et autres series numiriques.

Dans cet article nous discutons differents aspects de l'identifica-
tion des modiles ARMA par le maximum de vraissemblance. Nous soulignons
le r6le de la representation de "l'innovation" dans le lcul de la fonc-
tion de vraissemblance exacte. Finalement nous montrons comment la struc-
ture interne du modile peut itre mise a profit pour acc6l6rer le calcul de
la fonction de vraissemblance soit par un pr~dicteur rapide de Kalman soit
par l'implementation d'une structure en 6chelle (Lattice) rapide.

Autoregressive-moving average (ARMA) models, are useful approximants
to the kinds of random processes commonly encountered in discrete-time
signal processing applications. Such models may be used to compress data
in low bit-rate information transmission, improve frequency resolution in
spectrum analysis, and to forecast in economic, meteorological, and other
time series.

In this paper we discuss several aspects of the maximum likelihood
theory of parameter identification in ARMA models. We highlight the role
of innovations representations in exact likelihood theory and show how
internal model structure may be used to speed up calculation of likelihood
in either fast Kalman predictor or fast lattice implementations.

IThis work supported by the Office of Naval Research, Statistics and
Probability Branch, Arlington, VA 27740, under contract N00014-75-C-0518,
and by the Army Research Office, Research Triangle Park, NC 27709, under
contract DAAG2g-79-c-o176.

.
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1. INTRODUCTION

The random processes encountered in signal processing applications are

typically lowpass or bandpass processes in which redundancy is high. This

means finite-dimensional models may often be used to approximate the

second-order properties of the processes. The dominant motivations for

using finite-dimensional models are (1) they provide a systematic frame-

work for deriving data compression and frequency resolution improving

algorithms, and (2) they become predictor formulae for event forecasting.

The problems of data compression, resolution improvement, and forecasting

are "solved", so to speak, by identifying a parametric model that either

infinitely extends a data correlation sequence or matches the data, itself,

in a least squares or maximum likelihood sense.

AR models suffer the defect that spectral zeros are not easily modeled

with low-order schemes. Couple to this defect the fact that sample-data

versions of rational continuous-time processes are autoregressive moving

average (ARMA), and we have strong motivation for identifying the more

general ARMA models.

Traditionally the emphasis in identification of ARMA models has been on

approximate representations (such as "long ARs") that lead to linear iden-

tification procedures. However, more recently there has been a flurry of

activity in exact maximum likelihood formulations and nonlinear optimiza-

tion procedures.

[Box and Jenkins, 1976] developed the familiar conditional sum of squares

for the identification of univariate MA processes and treated the ARMA

case as a special MA of infinite dimension. This method was later general-

ized by [Newbold, 1974] and [Ali, 1977) to mixed processes. They obtained

expressions for the inverse and determinant of the sample correlation

matrix from which the exact likelihood could be computed. [Osborn, 1976)

applied the same approach to the case of multivariate moving average pro-

V cesses.

Using a different type of linear transformation of the input white noise

sequence, [Phadke and Kedem, 1978] showed how to obtain exact likelihood
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- for a pure moving average process by Cholesky decomposition of the corre-

lation matrix. This approach was generalized to the mixed models case by

[Ansley, 1979), who presented the first really efficient algorithm.

[Akaike, 1973] and [Anderson, 1978] have tried to obtain an analytical

solution to the problem of exact maximum likelihood for vector ARMA pro-

cesses. [Akaike, 1973] formulates the problem directly as the identifica-

tion of a Gaussian model by numerical maximization of the Gaussian likeli-

hood function. Following [Kashyap, 1970], he concentrates on obtaining

expressions for the gradient and Hessian of the log likelihood function to

be used in a Newton-Raphson type non-linear procedure. All these methods

are in fact approximate in the sense that they consider the conditional

likelihood with conditioning on some fixed initial conditions. [Anderson,

1978] and later [Arhabi, 1978, 1979] further developed the method and

expressed the likelihood function in terms of the ratio of the periodogram

to the spectral density function of the mOkel. Along these lines, the

following work is also relevant: [Tretter and Steiglitz, 1967], [Tunni-

cliffe Wilson, 1973], [Dunsmuir and Hannan, 1976], [Shaman, 1973], [Gal-

braith and Galbraith, 1974].

All the preceeding methods can be regarded as computationally impractical.

The success of the maximum likelihood theory as an identification proce-

dure for ARMA processes is directly tied up with the ability to efficiently

compute the likelihood function.

An alternative representation of an ARMA process is the Markovian represen-

tation, introduced by [Akaike, 1974]. As early as 1965, [Schweppe, 1965]

had indicated how Kalman filtering theory could be used to get the exact

likelihood function in the scalar case. Later [Harvey and Phillips, 1979)

further developed the theme. The method has been adapted to processes

*O with missing data in a very useful paper by [Jones, 1980]. Recently

[Gueguen and Scharf, 1980], using a somewhat different approach, based on

the innovations representation of an ARMA time series, have given new and

interesting filtering interpretations. These interpretations show the

connection between Markovian and innovations representations of a time

series and show how the Kalman gain vector is related to the impulse re-

sponses of increasing order autoregressive models fitted on the data.

L.
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In this paper we generalize these concepts to vector autoregressive moving

average models and obtain efficient recursive procedures to compute the

exact likelihood function in fast Kalman predictor and fast lattice forms.

2. EXACT LIKELIHOOD FOR VECTOR ARMA PROCESSES

T T
We assume that a finite set of observations {y0 " }N on a d dimensional,

zero mean, wide sense stationary random process {y t is given. The problem

to solve is one of fitting a vector ARMA (p,q) model, q < p,

p q
zam Ytm = bn Utn a = 1, for all t (1)

m=O n=O

to the data. {ut } is an input d dimensional, zero mean Gaussian whitet T
noide process whose (dxd) correlation matrix is E(ut u W.

The likelihood function is defined as the joint probability density of theT T

set of vector data (yo,,. .y , evaluated at the observations and param-

eterized by the ARMA parameters. Define the following ((N+l)dxl) observa-

tion vector

T = T'.. T

The vector y is distributed as a multivariate N(O,R) where R is an

(N+l)dx(N+l)d block Toeplitz matrix:

r r r0 1N

":R rt  E[yt ] T rTt

r_ N  rT0

We shall derive several expressions for the likelihood function: convention-

al, Markovian, and innovations.

2.1. Conventional representation of the likelihood. The (N+l)dx(N+l)d

matrix R is block Toeplitz symmetric but is not symmetric Toeplitz. The

likelihood function takes the form of the well known multivariate normal

density
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1 1/2 1 - 2L "/ IRK' exp{- R Y)
-o2

and the log-likelihood reduces to

log(L(y)), " (2 log 2w -. log iRI- u~u (3)

u - R-1/2

This is the vector closed-form often encountered in the literature [Ansley,

1979], [Anderson, 1978]. It is highly non-linear in terms of the ARMA

parameters (al'...,a pbos...,bqW). Several approaches can be considered

to maximize this expression. The conventional direct method consists in

deriving an approximate version of the likelihood by conditioning on some

initial conditions.

2.2. Markovian representation of the likelihood. An alternative approach

is to use the structure introduced in the Markovian representation of the

process {yt}. A stochastic process {yt} is said to exhibit a Markov prop-

erty if the future behavior of the process can completely be described by

some present state and the future input. The state condenses all the

information of the present and past of the process iyt . Assuming the

process is stable and minimum phase, [Akaike, 1974] has established the

equivalence of the Markovian and ARMA representations. The finiteness of

the dimension of the predictor space of an ARMA process is the fundamental

characteristic of a process with a Markovian representation.

Internal structure. The finite basis of the predictor space is chosen as

the state of the process. The process {yt } has the infinite MA represen-

tation

-Yt z h(k 4)
k-O

where u t  -t is the innovation of {yt } at time t. The analysis

of the different predictors Yt t ,..., reveals that they are

given by

Yt+S - L(yt t~l...'yt+pl tIut) s =1,2,...
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where L represents a linear transformation. The predictor space is then

of finite dimension p and the vector of one-step ahead to p-step ahead

predictions forms a basis for the predictor space. The state space model

we obtain in the following paragraphs is based on the concept of a finite-

dimensional predictor space. It is slightly different from the one given

. by [Akaike, 1974] since our definition of the state is a shifted version

of his.

Notice from the infinite MA representation (4) that the predictors are

*" written,

=t+i+l t Yt+i + h t-l for all i > 0. (5)

From (1), the subsequent relation also holds:

J Yt+p aI= Yt+p-i + h u t-1 6
p

These recursions impose an internal structure on the process. That is, if

we define the (dpxl) state vector Xt = [Yt . T.. we obtain

Xt = A Xt. 1 + B uti l

The vector ut = Yt - YtIt-1 is the innovation of the process as defined

earlier and has a multivariate normal density with zero mean and covari-

ance matrix W. A and B are respectively a (dpxdp) block state matrix and

a (dpxd) input matrix, defined as follows:
V

0 1 hl
) . 0m

A= . and 8

I

-a. . -aI  Lhpj

Hence the stationary stochastic process {yt} is represented as a linear

map from the input innovation process {ut) to {y t via a Markovian state

space structure
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Xt A Xt + But

T

y aC X +ut t t

with CT defined as the output (dxdp) matrix [1 0 . . . 0).

Initial conditions. The wide-sense stationarity of the process {yt )

imposes the condition that at time t=0 steady state has been achieved.

This means the time origin is rejected back to t=-- and the initial state

X0 is a zero mean (dpxl) random vector with probability density N(O,Q 0).

The (dpxdp) covariance matrix 0 satisfies the Lyapunov equation

Q A Q AT + B W BT

First order descriptor. The first order descriptor of the vector process

is the response to a unit pulse 6t applied as the th element of the vector

input ut. The resulting output corresponds to the ;th column of the (dxd)

impulse response matrix ht. The impulse response matrix is directly

obtained by replacing the input vector ut by a (dxd) input diagonal matrix

Lt. [Wolovich, 1974]

'At = diag (6t,...,6t )

" 1 t= 0
0 tt

The first order descriptor is then

- 0 for all t < 0

Sh o =I t - 0 (8)

ht CT At B for all t > 0

Second order descriptor. The lagged correlation matrices for the random

process (yt} are defined by rt = E(ytyT). Using the above Markovian repre-

sentation we obtain

0"
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T T T)
rt  E[(C Xt + ut)(C X0 + u0)

cT At Q C + CTAtlB W

That is, the correlation matrix for lag t is

rt =CT At QO C + ht W . t > 0

These equations are straightforward generalizations of the scalar version

[Gueguen/Scharf, 1980].

Likelihood. In this representation, the stationary sequence of prediction

residuals {ut} may be written

Ut = t -

This sequence is a sequence of i.i.d. random vectors with normal distri-
bution, N(O,W). The joint distribution of the input vector u (Uo...

T
UN) is then readily written as the product of normal distributions,NN

f(Uo,...,uN) = i N (0,W)
t=0 ut

These residuals may be computed causally from the time series values
T = T T

Y y N yT,.. provided the initial state is given:

".." ut =Yt "Yt( -
t

cT

= •"-" CTXo

Thus we may write the conditional likelihood function

N N
L(J/X O) - f(ut * t /Xo) = , N . w) (l0)

t t-Itt=O1

The exact likelihood function of the process is then obtained by integrat-

ing over all the realizations of the random initial state X0 which has a

j
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normal density N(O,Qo). Then

N
L(y)- allo N (Yt , W) N (o,p) d X(11)al0two Nyt It-I NXo

This result generalizes the scalar result of [Gueguen/Scharf, 1980]. It

is of theoretical interest as we shall see later, but of no computational

value. A maximum likelihood identification procedure based on the Markov-

ian representation could be derived using the conditional likelihood (10).

An interesting problem then is one of choosing the appropriate initial

state X0 [Gueguen/Scharf, 1980].

2.3. The Innovations Representation of Likelihood. [Gueguen and Scharf,

1980], drawing on ideas from [Anderson and Moore, 1978], showed how a

linear time varying predictor, or innovations, representation could be

derived from the Markovian representation. The essential advantage of

such a representation is that the initial predictor state is no longer a

random vector, but is rather an identically zero vector. These ideas
generalize to the multivariate case. This feature is of inestimable value

in likelihood theory, as we shall see.

Internal Structure. We are lboking for a model that will produce an out-

put yt that has the same statistical properties as the original ARMA pro-

cess. The innovations model maps, some time-varying zero-mean, Gaussian

white-noise { t }) into {yt} through a time varying structure. The states

are still defined as a (dpxl) vector of predictors, XT T

- -11 t but now they evolve according to the time varying state equa-

tion,

= A X + k u (12)

t t-l kt1 u-l

H Nere kt is a (dpxd) time varying Kalman block vector that replaces the

time invariance B of the Markovian representation:

J{T [kiT Tt It p,t

and {t is a multivariate nonstationary N(O,wt) innovation or predictiont e
residual that replaces the stationary residual sequence {ut) in the
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Markovian representation. wt = E[t T] is a (dxd) zero-lag correlation

matrix. The output is then given by the Markovian measurement equation

Yt= t + t = T  + t,-t t-

Initial conditions. The origin of time may be brought back to t=O and the

initial conditions may now be given deterministically as

0 0
XoOX

T o :EXo (13)
Q0 =EE 0 0 )

First order descriptor. Substituting the diagonal matrix A in place of

the vector ut leads to the following expression for the impulse response:
t

ht 0 for all i < 0'.- i

ht I i = 0 (14)

ht= CT Ai 'l k for all i > 0
'I t

The term ht. is the response of the representation (12) at time t+i to an

input A that applies a diagonal input at time t.

Second order descriptor. The (dxd) matrix correlation matrix sequence
t

{r.} of the output process is readily obtained as follows:

rt T

(15)

C T Ai P C + CT Ai-l kt wt

where Pt = E[XtX I is the (dpxdp) zero-lag state correlation and is charac-

,. terized by the Lyapunov equation

F-. T  T

.*i Pt+l " APt+l A k wt kt

The right choice for the Kalman vector k and the correlation matrix w
t 

t
can make {r } become time invariant.
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Choose k and wt such that
t

ktwt = -A Pt C + A Qo C + BW

and

!-"',"-"""wt ro -CT Pt C
w 0  T

where {rt ,B, Q0 are Markovian parameters defined in Section 2.2. Then,

t =T i T i-i
r- C A P C + C A [-A Pt C+A Q C+BW]

mcT Ai Q0 C+CT Ai-1 BW

r

The nice result here is the following: if one is interested only in the

second order properties of a stationary vector process, one can replace

the time-invariant Markovian representation by a time varying innovations

representation which gives the same mean value and correlation sequence

and whose advantage is that the initial conditions are deterministically

set at t=O.

Likelihood. Now we use the important property that the initial state in

the innovations representation is set at zero. The innovations process is

then

= -tut-t -  : N(Owt)

Thus the vector of observation Twill have the same distribution as the

input vector_0T with the different mean ( T T tT-

Hence y is distributed as N(jj), where ON is the d(N+l)xd( N+l) diagonal

* matrix nN = diag(w N, ...,w0 ). As a result the likelihood function is

expressed as a finite product of normal Nyt(9tlt-,,wt) densities:

Ni L(Y) " N (Ytl wt
wlt O Yt it-,,I

The log likelihood of the observations is formulated in the favorable

form,

d
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NlN INLT-log(L(Y))-='T- log(2n) E Ogw0 - Utt=otz
with

= Yt Y

In this form, the log likelihood function depends only on the innovations

values ut and variance values wt. Both u and wt are non-stationary

sequences that have a finite time dependence, and are given at each time t

by the Kalman filter defined for the innovations representation. This

means that we have now a recursive way of calculating the exact likelihood

function of vector ARMA processes. The values so obtained are then fed

into a non-linear optimization procedure of the Newton-Raphson type that

provides an optimal set of parameters. This procedure is repeated till

convergence is achieved, and maximum likelihood estimates of the ARMA

parameters obtained. This supposes that the orders (p,q) of the ARMA has

been determined.

2.4. Innovations representation and an important Chapman-Kolmogorov

equation. The two previous paragraphs have been devoted to the derivation

of the likelihood function of the process {yt ). By comparing the likeli-

hood expressions (11) and (16), obtained respectively for the Markovian

and innovations representations, we see that a very important Chapman-
Kolmogorov equation has been solved:

N N
- Ny(.t ,w)= f N (yt W)NX(O'Qo)dXo (17)

St=O t-l all t=O Yt t-l0

t-

Xt = AXt-I +ktut-I ; O
tt-Ut t-1 ti

-'4

r 
A •,+ kt t li

"u . 'o t
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yt C X  ; yo N( CT X0, CT Q0 C). t-1 t

St  AXt + But- 1 ; 0  N(O,Q O)

ut = Yt Yt

2.5. Comments. The maximum likelihood identification procedure may be

conducted in the following way. First start with an initial guess of the

ARMA parameters and compute the corresponding correlation sequence. (In

the scalar case, [Dugre/Beex/Scharf, 1980] proposes an algorithm.) Then

run the Kalman filter to obtain the value of the exact likelihood function.

This value is fed into a non-linear optimization procedure that updates

the vectors of parameters.

One may want to speed up the computations involved in Kalman filtering.

Appealing to the formulae (14), it is seen that there exists a close

relationship between the time varying impulse response sequence {h1} and

the vector Kalman gain. We shall use this feature extensively in the next

section to derive a Fast Kalman Algorithm (Morf, Sidhu, and Kailath algo-

rithm) that will avoid the solution of the Ricatti equation. This also

leads to a fast lattice implementation.

3. FAST ALGORITHMS

Recall the expressions of the exact likelihood (3) and (16) obtained by

the conventional method and the innovations method. It is clear that

N
LogjRj = I logjwtI

"t=O

and

I T 1 N T -)
2TtlO (ytyt t-l )

* Thus the innovations representation solve the triangularization of the

inverse correlation matrix to obtain the white vector
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u-' R -1 / 2

m- ,

or since R-1/2 is Invertible

1/2 u . (18)

But the triangular or Choleski decomposition is easily obtained from the

innovations representation (12). If we write the observation vector
T T T

y- a [yDO... YN upside down, we obtain the upper triangular block matrix

equation:

hN-1 N-2  h0

YNI h1 h2 hN uN

I h 2  ... h01 N-1

0 I

1 I ' ' 1

u N

:KN

Here the upper triangular block matrix K is (N+l)d x (N+l)d dimensional.
N

The block elements {h i} of the matrix are defined as the time varying
t

impulse response,

ht = CT Ai1  k
i t

h0 =I

The block correlation matrix R is computed as the expected value of the

outer product of the vector of observations:

T1 ]
R E a YO

.YO
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Thus the ((N+l)d x (N+l)d) dimensional block correlation matrix is decom-

posed into the following triangular form:

R = N  E [u ... T
R~~ KU E I}KN (19)

That is

r" r r I h -1 h W1 N N N
r r0  h - 0 0

R. . (20)

r0  r I  I h0

N r.I 0  Wo ( hO) T

(N)

Thus we may write

T N T 1 / 2T
R K KN SaN KN

with

R 1/2= K (P 0/2
N .N'

whre QN is the diagonal block matrix 2N = diag(wN ... W0). The triangular

matrix KN is invertible. Therefore we may write (20) in the form.

-1 R KT (21)N N N

By analogy with the scalar case, these equations are called the multivari-

ate normal equations. The inverse of the matrix KN' is redefined as a

N N

I N-1
aN 1

a = N (22)

0 a1I 
-



- - . 6 -

-9.16-
Now the analogy with the scalar case is much clearer. The block vector

N N[I a,, ...,a N represents the vector of parameters of an increasing order

vector autoregressive process fitted on the correlation matrix of the pro-

cess. This problem is solved in the scalar case by the Levinson-Durbin

algorithm [Levinson, 1947], [Durbin, 1960]. Equivalently, one might solve
t(21) directly for the time varying impulse response hi using the impulse1response algorithm [Leroux/Gueguen, 1977]. [Robinson and Wiggins, 1965)

entended the Levinson algorithm to the multivariate case.

3.1. The Generalized Impulse Response Algorithm. Here we want to derive

an algorithm to obtain directly the matrix impulse responses ht thati

appear in the matrix KN. It must not be forgotten that we are after a

fast algorithm to calculate the block Kalman gain vector kt. From rela-

tion (14), it is seen that the matrix impulse response sequence is given

by,

ht = CT Ai -1 k
1 t

where CT [ I 0,...,0] and A is the block companion matrix given in Sec-

tion 2.2. This means that the block Kalman gain vector kt is composed of

the first p impulse response matrices;

k T = [(i1)T.. ,(hp)T)kt [ tT

The generalized impulse response algorithm provides a recursive method

for calculating the Kalman gain vector.

Let's write the forward and backward predictors for orders p=O to N;

Forward Prediction

mI a r r,. r S !

k k kTHere SiR(h) and to connect the algorithm to the solution of (21), one,- ~ ~ k i )
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should have in mind that R-wk. The order p is the order of the AR part

of the ARMA (pq).

Backward Prediction

S: rr,- ,. ,. " .. .... r o v2 1
bN N L .,, r~ r.,. ,. 1  2,o -N-pvO -N- vo 1i

~From the matrix relation (23), the following results hold:

•N N
"N= .Ia r =1 for all N,.I 

I--2, a0SI2=0 
(25)

N N-I N- N NI Na . 0
S = (ar -a N I for -N

N N-1 N-1 N NN N-i

But the expression for the difference a N aN- is given by the (Robinson-

Wiggins algorithm, 1965] and hence substituting this expression in (25)

yields

N N-i r r-1 N N-i
i i N-[RN- _] BN- r1i.

4=-" (26)

bN I for all N

We recognize from (24) that the sum is exactly

r.:: N
N-i N-i
.N = bN ri.,

NTherefore the elements S satisfy the recursion

N N-[RN.I vN i > 0 (27)
Sj S N-i N-I -i-N

NThe same derivation is applied to Vi-N-1 and it is easily shown that:

VNN~i = SNi -Nl[RNl ' Sl i > 0 (28)

-. 4 ,
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The equations given R r1 and RcI do not need to be changed andNl N+ 1T
remin valid provided that we can get an expression for cLN a N that does

not include either the forward or the backward coefficients. From the

Robinson-Wiggins algorithm we know that

N r -

(2 9)

b N B [Rc_..l

N

From (22) and (23), one can extract the expression for bN gi-ven here:

N = B[Rc) ~ ~ - [So (30)

N
The same procedure leads to a similar expression for a N

N r1r-1 N-1 Nl-1
a N =aN-1 [N~l _ -N DO 1,- (31)

The generalized impulse response algorithm is then summarized as follows:

N N-1 r 9 -1 N-1
Si S Si ~N-1 CRN _11 V4N for all i

N = -i-N_] for all i
i i -1 NiN(32)

RN N RN ON

and

~NlRN 1 N-1 Ni1 1

Initial Conditions. The initial conditions are straightforward and given

by

0 0

CS= ... ...Ir[r

N6 N . o
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In the scalar case it reduces to the impulse response algorithm proposed

by [Leroux/Gueguen, 1977]. By analogy, the terms aN.1[R NJI1  and

O N.I[Re1.-1 will be called multivariate forward and backward reflection

coefficients (or parcor coefficients).

Remarks. This algorithm, although a recursive way of computing the im-

pulse response of the increasing order vector AR processes, does not

improve the number of computations a great deal. In fact, if one wants
TN EN)T,. one

to obtain the Kalman vector T = h ...,(h , one has to start the

algorithm with the knowledge of the matrix correlation sequence for -n-p-i

i<p. This interval depends on N.

So far the generalized impulse response algorithm has been derived with-

out using the information we have of the internal structure for the pro-

cess.

3.2. Generalized Impulse Response Algorithm for ARMA Processes: The

Morf, Sidhu and Kailath (MSK) Algorithm. We show here that the general-

ized impulse response algorithm, modified to take account of the ARMA

structure, is identical to the [Morf, Sidhu and Kailath, 1974] algorithm

derived from the Chandrasekar type equations. As the process {yt } is

ARMA, it behaves like an AR on its tail. That is, for N>O, the matrix

correlation sequence {rt } satisfies the AR(p) recursion,

rN+l+p + a1 rN+p + ... + ap rN+l =0 for all N >0. (33)

Here the {ai} are the true parameters of the autoregression. After trans-

position, equation (33) becomes,

r.N-1-p - [r_.N-1, .. r_.N p] (34)

If we write this equation for rop-1 to r.N-lp, then the following matrix

*I equation is true:

6-
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r .- . r_, r_2  r_ aT

:rN'p-l -r NN raP j

Premultiply by the row block vector of backward prediction coefficients
and obtain:

[bN'... bN I] r N (36)
[b N •p 

2V- - -

Therefore the internal structure imposed by the ARMA nature of the pro-

cess is characterized by the relation

aT
-aO_p
-aT

N N N (37)--N-p- - [VNl -N-2-N-p (37)

T

This indicates that we need only to compute p values VN to VN The
initial conditions are now given by {r }, independent of N. This obser-

1 -p
vation summarizes the essence of the Fast Kalman algorithm and underlies• -[VN N
the MSK algorithm. From (37), the vector N -2 V N p1 ] is given

by the linear transformation,

N N N VN AT (38)[VN-2 .. V.N-P-1l z[V.N-1lNp]T(8

N a N V
where A is the state companion matrix. The recursions giving Si and

in the generalized impulse response algorithm (32) are written for i=l,

- ' N [RN VNNI i. .p (39)

-.- - .V NN i-I VN -N- -I N R- ] -I S-

-N --.. N N-
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Define now the following (dxdp) dimensional block vectors

_ (S )T (vttl)Tjt  and V It j
p~ ". I t,\

Then the set of equations (39) is condensed into the vector form

KT =T rr, V T AT
-N+1 AN~LJ 4 (40)
V~ T T AT ..NRN)_ 4

£ N r *~It is also noted that RN S and R VN. These identities, together

with the expressions for R YN[R and NR] "I given in (32), prove that:

[vN-1)T CT cT - [I o,...,o)
T-TTTc= (41)

"N 4 N

Finally, for purposes of easy comparison with the MSK algorithm, define

the matrix Mk as the inverse of the matrix of mean square backward pre-

diction errors:

Mk R r 'l

kk

Then the generalized impulse response algorithm for a vector ARMA process

is summarized in these equations:

-N + l -A N -N

,.qT TVN ~ *AV -_KLRJ-3 CV'-1+ -N -NN (42)
I R I T RT + cT v N T  T

C+1 [RN~ .NIMN)
4,i .I NT ]T T 1 V EMN]T

[MN~) - C -N [Ms) [MN) yCRN) cT N [N)

This algorithm is readily recognized as one form of the MSK algorithm

* [Morf/Sidhu/Kailath, 1974), [Frledlander et al. 1978), applied on the

innovations state space model. To complete the identification the reader

should note that the matrix cT and the block vector VN in (42) correspond

.0
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respectively to the matrix H and the block vector in the MSK algorithm.

- The number of computations is significantly reduced compared to the direct

solution of the Riccati equation or to the generalized impulse response

algorithm. It should be clear that a number of operations can be per-

formed in parallel.

,Remarks. Recall that we are after an algorithm to compute the block Kal-

man gain vector in order to calculate the exact likelihood function. The

vector K introduced in (40) is defined as

K k S2
it t t

where k is the block Kalman gain vector we want and st is the blockt
diagonal correlation matrix of the innovations process, t diag(wt,...,Wo ).

The same derivation can be worked out in the scalar case starting from the

scalar impulse response algorithm. It leads to the scalar version of the

MSK algorithm used by [Pearlman, 1980].

The generalized impulse response algorithm or the fast Kalman algorithm

are also fast algorithms to generate the generalized reflexion coefficients
r -- 1

a N-. [RN._1 I and 0N.I[RR.I . Hence the method can be implemented as a

fast lattice as well.

4. CONCLUSIONS

In this paper we have derived a recursive procedure to compute the exact

likelihood for vector ARMA processes. The key to the method was the

"innovations" representation of the process that allowed the use of Kalman

4 filtering techniques. The Kalman vector gain was shown to be composed of

time varying impulse response values of the process. This motivated the

derivation of the generalized impulse response algorithm. Finally, intro-

ducing the knowledge of the internal structure of the ARMA process, we

4 showed that the generalized impulse response algorithm was identical to the

MSK or fast Kalman algorithm deived from the Chandrasekar type equations.
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ABSTRACT

A general framework for deriving and interpreting analysis and synthesis

spectra of the autoregressive (AR) and moving average (MA) type is reviewed.

Linear transformations of finite data records provide for a unified treatment

of spectra as different as the Bartlett (BA), the maximum likelihood method

(MlM) and the maximum entropy method (MEM) spectra. We then generalize these

ideas to ARMA linear transformations. An ARMA type spectrum is obtained and re-

lated to other ARMA spectra. A parameterization scheme is proposed.

INTRODUCTION

In many applications of signal processing such as sonar, radar, speech, and

communications, only short segments of the processes are available. This situ-

ation arises due either to inherent nonstationarities that force segmentation or

to the short interval over 9hich the signal can be observed. Hence the problem

of estimating spectral density functions from a finite set of time series ob-

servations is a crucial step in the modeling of underlying data. Current re-

search activity is primarily centered on "high resolution" or parametric methods

"" of spectrum analysis (cf ex: (l)-(4)). Recently a general framework for deriving

and interpreting analysis and synthesis spectra of the autoregressive (AR) and

0moving average (MA) type has been introduced (5)(6).

In most techniques, stationary time series are modeled as the output of time

*" invariant linear systems (filters) driven by stationary white noise sequences.

When dealing with finite length data records the problem of initial conditions

arises and is generally avoided by making some assumptions on the data outside



the interval of observation.

Alternatively, the proper initialization may be obtained by identifying time

varying models where the initial conditions manifest themselves as time vari-

*ations. In this approach, the vector of data is viewed as the result of a

linear transformation applied to a vector of uncorrelated values. This formu-

lation leads to a unified presentation and interesting interpretations of spec-

tral estimates such as the Bartlett (BA), maximum likelihood method (MLM) and

maximum entropy method (MEM) spectra (5)k). Depending on the type of data being

analyzed we are able to improve the performance of the BA and NLM spectra using

a parameterization procedure. It appears that these procedures provide a method

of classifying data as AR, MA or ARMA. These results are briefly reviewed in

the first part of this paper.

We generalize these concepts to the definition of an ARMA linear transfor-

mation on finite length data records using results from (7) and the statistics

literature (8), (9). This leads us to the derivation of an ARMA spectral esti-

mate analogous to the {LM spectrum in the AR case or the BA spectrum in the MA

case. Its relationship to "high resolution" ARMA spectra is also discussed. As

in the AR and MA case, it is speculated that an appropriate parameterization

procedure would improve the performance of such a spectral estimate, at least

for ARMA type data.

AR AND MA LINEAR TRANSFORMATIONS

T
Let Yt (yo.... .-y 1 ) denote a t-sample snapshot of the real, zero mean,

wide sense stationary process (yt) with correlation sequence (rt). Y t has a

symmetric and Toeplitz correlation matrix with first row (ro ...... r ). Let

TUt a (uo .... Utl) be a white vector with uncorrelated entries such that
E(Ut) 0 and E (Ut ) t (txt identity). The AR and MA linear transformations

are defined respectively by the matrix equations



A Y -U
t t t

Yt t HtUt

where the lower triangular matrices At and H are obtained by a Gram-Schmidt

orthogonalization procedure. These matrices can be computed from the cor-

relation matrix or its inverse since the following Cholesky decompositions hold

and are unique:

T
R -H Ht
Rt tHT

- T
Rt A A

t t t

t t t

Generalizing the linear system concept of frequency response, we define the

"frequency response" of the AR and MA linear transformations in a natural way

1as

A t(w) -At C t(w)

H (w) cH()t t t

with c(w) = (1 ejw .. e (t-l)

AR Case: An A is a whitening transformation, we associate with the AR complext

frequency response the spectrum

R",1 W
t A A(W) 12 CH( ) Rt1 C t()

' t-~t t t

This spectrum is recognized as the maximum likelihood method spectrum. In the

case of AR(p) data, the AR linear transformation At is A tp:

1 Superscript (H)T denotes (Hermitian) transpose.

0.

S
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a0
0 0

a1  a
0

A",.t,ppp
" -L 'a 

p  a p

P7 0*

0

p 01

In general the AR transformation matrix A can be approximated by A where
t t1p

the matrix is completed by repetition of the order -p row. The associated

spectrum is called a parameterized MLM spectrum and has been shown to yield

good spectral estimate-s in the case of AR type data. (See (5), (6), and Figure 1

of this paper).

MA case: The spectrum associated with the MA linear transformation is

R (a) - H ()12 . C () H H TC(w)t t t ttt

This spectrum is a vcaled version of the conventional or BA spectrum as written

in (10). If the data were MA(q), then the MA linear transformation matrix H

would be banded even though the rows would remain time varying:.
h. "10 h 0

0 % 0

0 0

q qh q ho
' .. q  " q ^

q 0 Htq

ht ht ,ht 0 hq h q
L t q o q 0

. A parameterization scheme H insuring non-negative spectra is proposed and
tq

associated with a parameterized BA spectrum in (6). (See Figure 2).

6



ARMA LINEAR TRANSFORMATIONS

Suppose the underlying process (y ) is ARMA (p,q):
p q
Z aj Yt -J"o bj Ct£ j

Here a - b - 1 and C is a white noise process. The snapshot yt has a cor-
0 0

relation matrix R. that has the LU decomposition

T
R Ht Ht •

We define the AR part of (y ) as the AR process (z ) with coefficients (ao...,a p).

A snapshot of the process Zt satisfies the AR linear transformation

A Z -U
tp t t

where Ut is a vector of uncorrelated data and At op is given by the Cholesky

decomposition

R-1 - AT  A
tp tp

Recall A has the banded structure illustrated earlier. Applying this AR
top

linear transformation to the snapshot Yt, produces a finite length vector Xt

whose correlation matrix RX has the following structure (7), (8), and (9):

a 0

RX- A Y X

A R AT Rtop r top R
0\

The matrix Rxis banded Toeplitz except for the upper left (p x p) corner.

Thus Rxis almost the (t x t) correlation matrix of a pure MA(q). However,

*RX has an L U Cholesky decomposition as follows:

T

B has the particular lower triangular structure (8)(9),x

S!



0
b

0

B bO
tq p 0

b P+l b p  I

:.:.0 b'
0 q o

0
b t bt

L. q 0

This decomposition corresponds to an MA linear transformation applied to

Et to produce :

Xt  -B E
t-"t,q t

Here Et is a vector of uncorrelated data. As a result the ARMA linear trans-

formation is summarized by the matrix relations

At,p Yt Xt Bt,q t

t,p t t,q

It is not hard to show that Ht is an impulse response matrix determined by the

Kalman gain (7). This fully characterizes B and sharpens the result of
t,q

Newton and Pagano (8), (9).

It should be noted that Bt,q is exactly a banded matrix for q > p-1. The ma-

* ..". trix A is easily constructed from (a0 ... ap) by running the Levinson/Durbin
t~p 0 p

algorithm for decreasing J,

k'Sia,,- a k~p, o <9.<k
. -.

i Jl J+l aJ+l i

°i, aJ+ I  j+l i  j+l j<p,

It is also shown in (8) that the last row of B converges to the vector ofi' -i t, q

, true MA coefficients as t goes to infinity:

lim b -b o < i < q
VO i

* .- . . i* -. _



ARMA Spectrum: If Sx (w) and Sy (w) denote the spectra corresponding to

X and Y a plausible definition of Sy (W) is

-S(W) Sx(_)
Syw - H T

C (W )A A C( W)
tip t~p

S (W) -C (W)B B TC(W)
X t~q t,q

Hence an ARMA spectrum has the following form:

CH( )B B T C( W) C R.XC
Sg (t) _

yH T
C ()A A C(W) CHR 1 c

t,1p tip z

This spectrum reduces to the M..M (BA) spectrum in the event of AR (MA) data.

ARMA Spectrum Analysis:

The method is based on the initial computation of the AR coefficients. For

t >p+q, these coefficients are computed using the lower left corner of zeros

in RX

. ,(O) r y(t)

00

a Ai o tip x-

T

a ~ a r (t) ~r (o)

In fact this corresponds to solving the normal equations on the tail:

p
E a r (m-k) - -r (M). M >ql

The method can be summarized in the following steps.

-Estimate the correlation matrix Ry, using the covariance method of

linear prediction, for example.

n Solve for (a ...a ) using the normal equations on the tail.

o p•



- Decompose Ry - HtH using a fast Choslesky decomposition routine

- Compute B a A H
t,q t'p t

- Compute SY(W) - C B tB C/CA A CYt,q t,q t,p t,pC

In the limiting case, H T

t14% S.(W) - a a T C

where b - (b° .... b )T and a - (a° .... a )To-qq -p a p •

Relationship With The "High Resolution" ARMA Spectrum: The "high resolution"

* ARMA spectrum (4) can be written using our notation as

S(W) M-
H TC- a Pa PC

Swhere a Pis the vector o-f AR coefficients and is computed by solving the normal
--p

equations on the tail, correspoding in fact to using the lower left corner of

zeros in RX. S (w) is the smoothed periodogram of the filtered process

(Ek) k 1 .... t:
p

k =k + ii al Yk-i

This time invariant filter can be expected to whiten the data less than the

linear transformation At p and hence yield a process ek far from a pure MA(q).

The spectrum proposed here is consistent with both the MLM and the BA spectrum.

Furthermore it is fairly flexible since one can apply a parameterization pro-

cedure on the AR part or on the MA part or both. Different sizes can be chosen

to extend the matrices A and B depending on the relative importance of
t,p t,q

the poles and zeros in the spectrum. This should give better control of the

compromise between resolution and smoothness and provide a tool for analysis of

spectra of the ARMA type. For the moment, these results are conjecture based

on the experience gained for AR and MA linear transformations.

_" • . . , - . " - . . . . .. . . ..
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ABSTRACT Simulations on synthetic date sets lead to

A general framework for deriving and in- ilnteresting conclusions: the parameterizatios
terpreting analysis and synthesis spectra of of the correlation matrix R and its inverse
the autoregressive (AR) and moving average seem to be useful for deciding whether a data set
(MA) type is presented. Investigation of AR is of the AR or MA type. In the paper we use term-
linear transformations of finite dimensional inology like stationary time series, snapshot,
data records yields a set of intermediate AR filter, and linear transformation. This terminol-
techniques associated with approximation of ogy is summarized in Fit. 1. The figure is re-
the inverse correlation matrix R- 1 . The ferred to throughout the text.
corresponding spectrum we call a parameter- Fig. 1. LFL ALW OF ANOM DAT
ized maximum likelihood method (pMIM) spec-
trum. Investigation of MA linear transfor-
mations yields a set of intermediate MA ... ,
techniques associated with approximation of
the correlation matrix R. The corresponding
spectrum we call a parameterized Bartlett
spectrum (pBA). Agin

Simulations on synthetic AR, MA and ARMA
data sets illustrate the techniques and lead
to interesting remarks concerning the use of I
parameterizations of R and R- 1 to differen-
tiate between data sets of AR and MA type.

INTRODUCTION

Modern spectrum estimation is primarily
concerned with the Identification of parametric r
models that represent an underlying random pro- OLATT.)

Cess. In most techniques, the concept of wide
sense stationarity seams to underly the very no-
tion of a spectrum. A stationary time series is !,j
modeled as the output of a time invariant linear ALAYTI,

system driven by a stationary white noise process.
The difficulty with stationary models is that in-
itial conditions manifest themselves as nuisance AR REPRESENTATIONS OF A STATIONARY TIME SERIES
parameters. The problem of the proper initial-
ization can be solved by identifying non station- In this section we briefly recall the results
ary models where the inital conditions are absorbed developed in [1) and provide an alternative inter-
naturally into the theory. pretation of the maximum likelihood method spectrum.

Pursuing ideas developed in [1), we present Let (yt) denote a real, zero-mean wide sense
a general framework for derivin and interpreting stationary sequence with real 12 correlation .se-

analysis and synthesis spectra of the autoregres- quence (rt
sive (AR) and moving average (MA) type. Investi- Kolmogorov Representation:
gation of AR linear transformations of finite
dimensional data records yields a set of inter- The sequence (yt has the following AR re-
mediate techniques (parameterized likelihood) presentation
[i], [2], associated with the maximum likelihood a y ut  a
mthod (MU.M) [3) and maximum entropy method (MEM) n I an Yt-n aou
[ 51. (]1 of spectrum analysis. Investigation
of MA linear transformations yields intermediate where ut is a white noise sequence with zero mean
MA techniques (parameterized Bartlett) associated and unit variance. The coefficients (ai) are the
with an approximation of the correlation matrix and AR (a) filter coefficients.
and the conventional Bartlett (BA) spectrum [7).

-"•"i " " "" . !
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The first order descriptor is readily obtained As A Y = U describes a whitening operation ont
by replacing the input sequence (ut ) by (6t), Yt' reflacin', Yt by Ct(w) yields

• .. ( 6t.o t +o, 6o1):,7. At (w0) -Ate (M

a anht-n f t for all t C H e+w ..... ejw(t-1)
n-0 t

* The correlation sequence, a second order descrip- This is a column vector of phased complex fre-
tor, is characterized by quency responses for the MA whiteners a:

t-lJ a.Ja A t(w) - ( a(w) ...... a ())

."a., r. an " 6, a(w) - 8 Ct w)

The specialization to the AR(p) case is straight- The spectrum associated with Y is the inverse of
forward, the spectrum associated with tie whitening trans-
AR or Analysis Transformations formation At (Norm of the complex frequency re-

We consider now a finite length data record sponse)

(yo .... yt-l ). of the process (y ). It has
a symmetric and Toeplitz correlation matrix Re( ) " (u " C Cu)RMlCt(L)
R t

r 0  r 1  rt t tl 1
I;, o = t-l

r I aS(W)12
I 8-0

Rt/. This spectrum has the following internretations:
, -RM(w) is the maximum likelihood method (M1M)r- rt-l ro j spectrum [3)

T -0The inverse of Rt (w) is an average of order
Te -hs aincreasing whitening spectra [5].

inverse correlation matrix R s a UL - If only the (t-l) term is used in the sum-
. Cholesky decomposition (Fig. 1): mation above (corresponding to a very specific

R - A A weihting pattern), the maximum entropy method
t t t (MEM) spectrum is vroduced (4].

a - UsinR the second interpretation of the column
0I vector a , the .91 spectrum is also the Fourier

transform of the diagonal sums of a correlation
At. sequence. This correlation is built on the impulse

response sequence for the AR filters that corre-tl- spond to the order-s MA synthesizers (o<sa< t-1).
a" t-i &I!- -- --,

Parameterized AR Transformation
Defining the white vector U . as E(Ut )-o and
E(U U ) - I (txt identity), the snapshot Y If the process (y ) is AR (p), then in the
has-the AR type representation (Fig.l). Levinson/Durbin algorithm, the reflection coeffi-

cients convere to 0 in exactly p steps. Hence
A tY t'Ut for tsp, the at vectors repeat themselves and

The row vectors a of A are the order-s MAwhite- the AR transformation specializes as follows:
ners or analy-ers and tie column vectors are ,0
interpreted as impulsive exciters M1). a is also o.
known as the Impulse response for the AR filter -
that corresponds to the order-s MA synthesizer 0,
-- A ap  SP

The first order descriptor is obtained by sub- t,p p. 0.
" stituting It for Ut to obtain % --

A0 Htp _Ia lap
A t p 0

. where it is the matrix
The results for AR(p) linear transformations sul-

o est that the AR transformation A may be approxi-
h h t0 o, mated by the pth order approximan At .11], [2].0 The associated spectrum is a parameter zed maxi-

""h- mum likelihood spectrum. Its properties have been
, t  L h h s  

explored in [1], [2], [91.

hl ht hl t-1 t- o



L----

MA REPRESENTATIONS OF A STATIONARY TIME SERIES frequency responses,
"- 1R( ) 1t-l

The same ideas translate directly to the MA R' (w) , - T ohs(W)12

case where the LU Cholesky decomposition of the t t 305

- correlation matrix R plays a key role (Fig.l). This is the reason for the extreme smoothness of
This yields an intermediate spectrum called the the conventional spectrum.
parmeterized Bartlett spectrum (pBA). - It is also interpreted in terms of the impulse
Wold Decommosition responses for the AR filters corresponding to the

order-s MA whiteners (o<_s< -t-1). It is the
The Wold decomposition for the sequence (yt Fourier transform of the diagonal sums of the cor-

is the infinite moving average (MA(-)): relations built on these Impulse responses.

Yt Jo hn Ut-n Parameterized MA Transformations

The coefficients (h ) are the MA(-) filter coeffi- As in the AR case, the parameterization is

cients. They are also the impulse response se- suggested by the particular structure of the ma-

quence since substituting (6t) for (u ) yields: trix Ht in the MA(q) case. Suppose the original
t t process (yt) is MA(q). By running the impulse re-

h -h >0sponse algorithm we can generate the column vectors
t t of Ht . The algorithm in that case produces time

ht 0 o varying impulse responses of maximum length q.
t Hence the MA transformation specializes as follows:

The correlation sequence (second order descriptor) ho

is then written in terms of the first order des- o.
criptor: 0

rt " n1o hnhn+JtJ for all t Ht h q  
q

q 0

MA or Synthesis Transformation 0

As in the AR case, we consider only the snap- 
ht -I  -

t

shot Y .The corresponding Rt, symmetric and 
q o

Toeplitz correlation matrix has the LU Cholesky The order-s MA synthesizers hs stop their growth
decomposition at s-p but remain time varying . hs converges to

R H HH the true stationary MA(q) synthesizer only for
t.t s a . This is a major difference with the spe-

where H is the lower triangular matrix introduced cialization of the AR transformation for the AR(p)

in the second section. The sth column vector hs  case.
is the order-s MA synthesizer and the sth column The parameterization suggested corresponds to
vector h.is the impulse response of an !UA linear applying a rectangular window on the correlation

... transformation to an pulse applied at time s sequence and then using the impulse response al-

h, is also the impulse response for the AR filter gorithm. This procedure can lead to negative
corresponding to the order-s MA whitener. spectra that are meaningless, even though the

The finite length data record Yt has the MA Toeplitz nature of the approximant is preserved.

type representation We propose the following approximation:

¥t . HtUt ho

and the first order descriptor is obtained by re- 0 0
placing Ut by It: Ht - Ht. The frequency response . 0
of the MA transformations is q h q

H. Ht~q q 0o.

H( ) - C(W)Ht "q
This is a row vector of phased complex frequency q
responses for the impulse responses (ho(M)....

ht..(W). As in the AR linear transformation case, This approximation of Ht does not preserve the
we define a spectrum Toeplitz property but insures against negative

spectra. As in the AR case, it corresponds to

1) C- t-l applying more weight to the q-order A synthesizer.
Rt(w) -- oHt(w)I2 (w)R ( M hs( )Il The spectrum associated with H is a parameter-

ized Bartlett (BA) spectrum:
The spectrum R'(w has then the following inter- 1 H H

tl
. pretatioma: -Cw I ,Ct(w)

- R(w) - nl-(t-1) (1 , )rn

r71 This is the conventional or Bartlett spectrum

-.It is also an average of magnitude squared

c i - -,, ,-. : .,_. .. . . ., . . ,- .- . _ i ° - .: :- .
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effect is seen in the parameterized BA spectrum. (8) C.J. Gueguen, L.L. Scharf, "Exact Likelihood

Finally the same experiment is carried out Identification of A&MA Models: A Signal
for a set of ARMA (2,1) data with a pair of complex Processing verspective," Proc. EUSIPCO,

--i conjugate poles at .66±J.49 and a real zero at'.33. Lausanne, Switzerland, Sept. 1980.
Here again we note the effect of parameterization. (9) J.P. Dugre, "Parametric Spectrum Analysis of
Both the BA and the fLM are affected, but the effect Stationary Random Sequences," Ph.D. dis-
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We can summarize the results in the following
way. The selection of the right technique in ACKNOILEDTIE TS
parametric spectrum analysis depends a great deal
on the type of data being analyzed. An MA type Our thinking has been influenced by recent
technique will be much more suited to the analysis results of M. Morf, T. Kailath, B. Friedlander
of data of the MA type than an AR technique. This and by remarks of A. Oppenheim at L'Aquila in
is obvious. Furthermore, once the right technique September 1980.
has been selected it is seen that parameterization
has little effect on the resulting spectrum. These
results seem to provide a method to differentiate

* between data sets of the MA, AR or ARMA type. One
has to compare the parameterized NLM and Bartlett
spectra to the non-parameterized ones to decide
which one has been affected most. Continue to next page for Figures 2 through 7

CONCLUSIONS

We have presented a general framwork for de-
riving and interpreting analysis and synthesis
spectra of the AR and MA type. Along the lines of
[1 and(2]we have introduced a parameterized Bartlett
spectrum. Here we haven't been concerned with the
very important problem of order fitting. An order

* fitting rule (J-Divergence) was proposed in [1).
Discussions of MA(q) and AR(p) linear transfor-
mation generalize to ARMA(p,q) transformations.
Such transformations underly lattice and inno-
vations representations of stationary time series
and are the object of future work.
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